# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.Wikipedia # Lint as: python3 """mMARCO Passage dataset.""" import json import datasets _CITATION = """ """ _DESCRIPTION = "dataset load script for mMARCO Passage following tevatron training data format" languages = [ "arabic", "hindi", "korean", "japanese", "spanish", ] _DATASET_URLS = { lang: { 'train': f"https://huggingface.co/datasets/jonghwi/tevatron-mmarco-passage/resolve/main/{lang}-train.jsonl.gz", } for lang in languages } class MMarcoPassage(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version("0.0.1"), name=lang, description=f"mMARCO passage train datasets for {lang} following tevatron training data format" ) for lang in languages ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'positive_passages': [ {'docid': datasets.Value('string'), 'text': datasets.Value('string')} ], 'negative_passages': [ {'docid': datasets.Value('string'), 'text': datasets.Value('string')} ], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) ''' if self.config.data_files: downloaded_files = self.config.data_files else: downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) ''' splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): """Yields examples.""" for filepath in files: with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if data.get('negative_passages') is None: data['negative_passages'] = [] if data.get('positive_passages') is None: data['positive_passages'] = [] yield data['query_id'], data