exebench / exebench.py
Jordi Armengol-Estape
first commit
24dbd99
raw
history blame
9.35 kB
# coding=utf-8
# Copyright 2022 ExeBench authors
# The code required to produce and load this dataset is licensed under MIT License.
# The code samples included in this dataset keep their own licenses, which can be retrieved via their metadata.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Please note that the dataset release is still work in progress.
"""The ExeBench dataset."""
import json
import datasets
from pathlib import Path
_CITATION = """\
@misc{TODO
}
"""
_DESCRIPTION = """\
An ML-scale dataset of executable C functions
""" # TODO: expand
_HOMEPAGE = "https://github.com/jordiae/exebench"
_LICENSE = "Multiple: see each function license (fields 'ref' and 'path')"
_URL = "" # "https://huggingface.co/datasets/jordiae/exebench-test/resolve/main/"
_REMOVED_FEATURES = ["doc", "angha_error", "real_error", "angha_io_error", "real_io_error",
"angha_io_pairs_are_trivial", "real_io_pairs_are_trivial"]
_RENAMED_FEATURES = {"angha_deps": "synth_deps", "angha_io_pairs": "synth_io_pairs",
"angha_exe_wrapper": "synth_exe_wrapper", "angha_iospec": "synth_iospec"}
_FEATURES = datasets.Features(
{
"path": datasets.Value("string"),
"func_def": datasets.Value("string"),
"func_head": datasets.Value("string"),
"fname": datasets.Value("string"),
"signature": datasets.Sequence(datasets.Value("string")),
# "doc": datasets.Value("string"),
# "angha_error": datasets.Value("string"),
# "real_error": datasets.Value("string"),
"asm": datasets.Sequence({'target': datasets.Value("string"), 'code': datasets.Value("string")}), # unflat dict#Optional[Dict[str, Optional[FuncAsm]]] = None
"synth_deps": datasets.Value("string"),
"real_deps": datasets.Value("string"),
"synth_io_pairs": datasets.Sequence({
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"dummy_funcs": datasets.Value("string"),
"dummy_funcs_seed": datasets.Value("int64")
}),
"real_io_pairs": datasets.Sequence({
"input": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"output": datasets.Sequence({'var': datasets.Value("string"), 'value': datasets.Value("string")}),
"dummy_funcs": datasets.Value("string"),
"dummy_funcs_seed": datasets.Value("int64")
}),
# "angha_io_error": datasets.Value("string"),
# "real_io_error": datasets.Value("string"),
"synth_exe_wrapper": datasets.Value("string"),
"real_exe_wrapper": datasets.Value("string"),
# "angha_io_pairs_are_trivial": datasets.Value("bool"),
# "real_io_pairs_are_trivial": datasets.Value("bool"),
"ref": datasets.Value("string"),
"synth_iospec": datasets.Value("string"), # serialized, TODO: improve
"real_iospec": datasets.Value("string")
}
)
class ExeBenchConfig(datasets.BuilderConfig):
"""BuilderConfig for ExeBench."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for The Pile.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
**kwargs,
)
class ExeBench(datasets.GeneratorBasedBuilder):
"""Semantic Textual Similarity Ca dataset."""
BUILDER_CONFIGS = [
ExeBenchConfig(
name="ExeBench",
version=datasets.Version("1.0.1"),
description="Executable C dataset"
),
]
def _info(self):
"""Give information and typings for the dataset."""
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=_FEATURES,
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
# "train_not_compilable": f"{_URL}train_not_compilable.tar.gz",
#"train_synth_compilable": f"{_URL}train_synth_compilable.tar.gz",
# "train_real_compilable": f"{_URL}train_real_compilable.tar.gz",
#"train_synth_simple_io": f"{_URL}train_synth_simple_io.tar.gz",
# "train_real_simple_io": f"{_URL}train_real_simple_io.tar.gz",
#"train_synth_rich_io": f"{_URL}train_synth_rich_io.tar.gz",
#"valid_synth": f"{_URL}valid_synth.tar.gz",
# "valid_real": f"{_URL}valid_real.tar.gz",
"test_synth": f"{_URL}test_synth.tar.gz",
"test_real": f"{_URL}test_real.tar.gz",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
#datasets.SplitGenerator(name='train_not_compilable',
# gen_kwargs={"files": downloaded_files["train_not_compilable"]}),
#datasets.SplitGenerator(name='train_synth_compilable',
# gen_kwargs={"files": downloaded_files["train_synth_compilable"]}),
#datasets.SplitGenerator(name='train_real_compilable',
# gen_kwargs={"files": downloaded_files["train_real_compilable"]}),
#datasets.SplitGenerator(name='train_synth_simple_io',
# gen_kwargs={"files": downloaded_files["train_synth_simple_io"]}),
#datasets.SplitGenerator(name='train_real_simple_io',
# gen_kwargs={"files": downloaded_files["train_real_simple_io"]}),
#datasets.SplitGenerator(name='train_synth_rich_io',
# gen_kwargs={"files": downloaded_files["train_synth_rich_io"]}),
#datasets.SplitGenerator(name='valid_synth',
# gen_kwargs={"files": downloaded_files["valid_synth"]}),
#datasets.SplitGenerator(name='valid_real',
# gen_kwargs={"files": downloaded_files["valid_real"]}),
datasets.SplitGenerator(name='test_synth',
gen_kwargs={"files": downloaded_files["test_synth"]}),
datasets.SplitGenerator(name='test_real',
gen_kwargs={"files": downloaded_files["test_real"]}),
]
def _generate_examples(self, files):
"""Yield examples as (key, example) tuples."""
key = 0
import zstandard as zstd
for path in Path(files).rglob('*.jsonl.zst'):
with zstd.open(open(path, "rb"), "rt", encoding="utf-8") as f:
for row in f:
data = json.loads(row)
data = data['text']
data = self._fixes(data)
for io_pairs_kind in ('synth_io_pairs', 'real_io_pairs'):
if data[io_pairs_kind]:
new_io_pairs = []
for e in data[io_pairs_kind]:
new_e = {}
new_e['input'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['input'].items()] if e['input'] else []
new_e['output'] = [{'var': var, 'value': json.dumps(value)} for (var, value) in e['output'].items()] if e['output'] else []
new_e['dummy_funcs'] = e['dummy_funcs']
new_e['dummy_funcs_seed'] = e['dummy_funcs_seed']
new_io_pairs.append(new_e)
data[io_pairs_kind] = new_io_pairs
data['synth_iospec'] = json.dumps(data['synth_iospec'])
data['real_iospec'] = json.dumps(data['real_iospec'])
yield key, data
key += 1
def _fixes(self, row):
row['asm'] = [{'target': target, 'code': code['func_asm'] if code else None} for (target, code) in
row['asm'].items()] # TODO: pre_asm etc
for removed_key in _REMOVED_FEATURES:
if removed_key in row:
del row[removed_key]
for original_key, new_key in _RENAMED_FEATURES.items():
row[new_key] = row[original_key]
del row[original_key]
return row