Dataloader supporting trainval - remaining memory issue
Browse files- DUDE_loader.py +88 -50
- README.md +1 -0
- data/DUDE_dataset-sample_gt.json +23 -12
- test_loader.py +2 -2
DUDE_loader.py
CHANGED
@@ -17,7 +17,6 @@
|
|
17 |
import os
|
18 |
import copy
|
19 |
import json
|
20 |
-
from pathlib import Path
|
21 |
from typing import List
|
22 |
import pdf2image
|
23 |
from tqdm import tqdm
|
@@ -29,7 +28,7 @@ import datasets
|
|
29 |
_CITATION = """
|
30 |
@inproceedings{dude2023icdar,
|
31 |
title={ICDAR 2023 Challenge on Document UnderstanDing of Everything (DUDE)},
|
32 |
-
author={Van Landeghem, Jordy
|
33 |
booktitle={Proceedings of the ICDAR},
|
34 |
year={2023}
|
35 |
}
|
@@ -38,26 +37,53 @@ _CITATION = """
|
|
38 |
_DESCRIPTION = """\
|
39 |
DUDE requires models to reason and understand about document layouts in multi-page images/PDFs to answer questions about them.
|
40 |
Specifically, models need to incorporate a new modality of layout present in the images/PDFs and reason
|
41 |
-
over it to answer DUDE questions.
|
42 |
-
"""
|
43 |
|
44 |
_HOMEPAGE = "https://rrc.cvc.uab.es/?ch=23"
|
45 |
|
46 |
_LICENSE = "CC BY 4.0"
|
47 |
|
48 |
-
_SPLITS = ["
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
def batched_conversion(pdf_file):
|
@@ -133,21 +159,27 @@ class DUDE(datasets.GeneratorBasedBuilder):
|
|
133 |
self, dl_manager: datasets.DownloadManager
|
134 |
) -> List[datasets.SplitGenerator]:
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
splits = []
|
137 |
-
for split in _SPLITS:
|
138 |
-
annotations = {}
|
139 |
-
if f"{split}_annotations" in _URLS: # blind test set
|
140 |
-
annotations = json.load(open(_URLS[f"{split}_annotations"], "r"))
|
141 |
-
pdfs_archive_path = dl_manager.download(_URLS[f"{split}_pdfs"])
|
142 |
-
pdfs_archive = dl_manager.iter_archive(pdfs_archive_path)
|
143 |
-
OCR_archive_path = dl_manager.download(_URLS[f"{split}_OCR"])
|
144 |
-
OCR_archive = dl_manager.iter_archive(OCR_archive_path)
|
145 |
splits.append(
|
146 |
datasets.SplitGenerator(
|
147 |
name=split,
|
148 |
gen_kwargs={
|
149 |
-
"
|
150 |
-
"OCR_archive": OCR_archive,
|
151 |
"annotations": annotations,
|
152 |
"split": split,
|
153 |
},
|
@@ -155,41 +187,47 @@ class DUDE(datasets.GeneratorBasedBuilder):
|
|
155 |
)
|
156 |
return splits
|
157 |
|
158 |
-
def _generate_examples(self,
|
159 |
-
def retrieve_doc(
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
def retrieve_OCR(OCR_archive, docid):
|
169 |
-
for file_path, file_obj in OCR_archive:
|
170 |
-
# /DUDE_sample_OCR/OCR/Amazon Textract/md5_{original,due}.json
|
171 |
-
path, ext = file_path.split(".")
|
172 |
-
filename = path.split("/")[-1]
|
173 |
-
md5 = filename.split("_")[0]
|
174 |
|
175 |
-
|
176 |
-
|
177 |
|
178 |
question = self.info.features["question"]
|
179 |
answers = self.info.features["answers"]
|
180 |
|
181 |
extensions = {"pdf", "PDF"}
|
182 |
|
|
|
|
|
183 |
for i, a in enumerate(annotations):
|
184 |
a["data_split"] = split
|
185 |
-
a["
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
187 |
|
|
|
188 |
# FIXES for faulty generation
|
189 |
-
#a.pop("answers_page_bounding_boxes") # fix later
|
190 |
-
if a["answers_page_bounding_boxes"] in [
|
191 |
a["answers_page_bounding_boxes"] = None
|
192 |
else:
|
193 |
-
if isinstance(a[
|
194 |
-
a["answers_page_bounding_boxes"] = a[
|
195 |
-
|
|
|
|
|
|
|
|
|
|
17 |
import os
|
18 |
import copy
|
19 |
import json
|
|
|
20 |
from typing import List
|
21 |
import pdf2image
|
22 |
from tqdm import tqdm
|
|
|
28 |
_CITATION = """
|
29 |
@inproceedings{dude2023icdar,
|
30 |
title={ICDAR 2023 Challenge on Document UnderstanDing of Everything (DUDE)},
|
31 |
+
author={Van Landeghem, Jordy et . al.},
|
32 |
booktitle={Proceedings of the ICDAR},
|
33 |
year={2023}
|
34 |
}
|
|
|
37 |
_DESCRIPTION = """\
|
38 |
DUDE requires models to reason and understand about document layouts in multi-page images/PDFs to answer questions about them.
|
39 |
Specifically, models need to incorporate a new modality of layout present in the images/PDFs and reason
|
40 |
+
over it to answer DUDE questions.
|
41 |
+
""" # DUDE Contains X questions and Y and ...
|
42 |
|
43 |
_HOMEPAGE = "https://rrc.cvc.uab.es/?ch=23"
|
44 |
|
45 |
_LICENSE = "CC BY 4.0"
|
46 |
|
47 |
+
_SPLITS = ["train", "val"]
|
48 |
+
|
49 |
+
_URLS = {
|
50 |
+
# "binaries": "https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_binaries.tar.gz", #
|
51 |
+
# "annotations": "https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_dataset-sample_gt.json" #"
|
52 |
+
"binaries": "https://huggingface.co/datasets/jordyvl/DUDE_loader/resolve/main/data/DUDE_train-val-test_binaries.tar.gz", # DUDE_train-val-test_binaries.tar.gz
|
53 |
+
"annotations": "https://zenodo.org/record/7600505/files/DUDE_gt_release-candidate_trainval_exabs.json?download=1",
|
54 |
+
}
|
55 |
+
|
56 |
+
#'0017b64bd017f06db47e56a6a113e22e'
|
57 |
+
SKIP_DOC_IDS = ["ef03364aa27a0987c9870472e312aceb", "5c5a5880e6a73b4be2315d506ab0b15b"]
|
58 |
+
|
59 |
+
|
60 |
+
def parse_bbox(bbox):
|
61 |
+
|
62 |
+
if bbox in [[], [[]]]:
|
63 |
+
return None
|
64 |
+
|
65 |
+
answers_page_bounding_boxes = []
|
66 |
+
|
67 |
+
if isinstance(bbox[0], list):
|
68 |
+
bbox = bbox[0]
|
69 |
|
70 |
+
keys = ["left", "top", "width", "height", "page"]
|
71 |
+
|
72 |
+
for page_bb in bbox:
|
73 |
+
if len(page_bb) == 0:
|
74 |
+
continue
|
75 |
+
page_bb = {key: page_bb[key] for key in keys}
|
76 |
+
"""
|
77 |
+
if page_bb.get("label"):
|
78 |
+
del page_bb["label"]
|
79 |
+
if page_bb.get("error"):
|
80 |
+
del page_bb["error"]
|
81 |
+
if page_bb.get("multipage_box"):
|
82 |
+
del page_bb["multipage_box"]
|
83 |
+
#assert all(key in page_bb for key in keys)
|
84 |
+
"""
|
85 |
+
answers_page_bounding_boxes.append(page_bb)
|
86 |
+
return answers_page_bounding_boxes
|
87 |
|
88 |
|
89 |
def batched_conversion(pdf_file):
|
|
|
159 |
self, dl_manager: datasets.DownloadManager
|
160 |
) -> List[datasets.SplitGenerator]:
|
161 |
|
162 |
+
annotations = json.load(open(_URLS[f"annotations"], "r"))
|
163 |
+
# binaries_archive = dl_manager.iter_archive(binaries_path)
|
164 |
+
|
165 |
+
if self.config.data_dir: #unpacked it to a custom directory
|
166 |
+
binary_extraction_path = self.config.data_dir
|
167 |
+
else:
|
168 |
+
binaries_path = dl_manager.download(_URLS['binaries'])
|
169 |
+
binary_extraction_path = dl_manager.extract(binaries_path)
|
170 |
+
binary_extraction_path += "/home/jordy/Downloads/" + _URLS["binaries"].split("/")[
|
171 |
+
-1
|
172 |
+
].replace(
|
173 |
+
".tar.gz", ""
|
174 |
+
) # weird unpacking behaviour
|
175 |
+
|
176 |
splits = []
|
177 |
+
for split in _SPLITS: # split archive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
splits.append(
|
179 |
datasets.SplitGenerator(
|
180 |
name=split,
|
181 |
gen_kwargs={
|
182 |
+
"binary_extraction_path": binary_extraction_path,
|
|
|
183 |
"annotations": annotations,
|
184 |
"split": split,
|
185 |
},
|
|
|
187 |
)
|
188 |
return splits
|
189 |
|
190 |
+
def _generate_examples(self, binary_extraction_path, annotations, split):
|
191 |
+
def retrieve_doc(docid):
|
192 |
+
extracted_path = os.path.join(binary_extraction_path, "PDF", split, docid + ".pdf")
|
193 |
+
with open(extracted_path, "rb") as f:
|
194 |
+
return f.read()
|
195 |
|
196 |
+
def retrieve_OCR(docid, ocr_engine="Amazon", format="original"):
|
197 |
+
extracted_path = os.path.join(
|
198 |
+
binary_extraction_path, "OCR", ocr_engine, docid + f"_{format}.json"
|
199 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
with open(extracted_path, "rb") as f:
|
202 |
+
return f.read()
|
203 |
|
204 |
question = self.info.features["question"]
|
205 |
answers = self.info.features["answers"]
|
206 |
|
207 |
extensions = {"pdf", "PDF"}
|
208 |
|
209 |
+
annotations = [x for x in annotations if x["data_split"] == split]
|
210 |
+
|
211 |
for i, a in enumerate(annotations):
|
212 |
a["data_split"] = split
|
213 |
+
if a["docId"] in SKIP_DOC_IDS:
|
214 |
+
continue
|
215 |
+
a["document"] = retrieve_doc(a["docId"])
|
216 |
+
a["OCR"] = retrieve_OCR(a["docId"])
|
217 |
+
|
218 |
+
a["answers_page_bounding_boxes"] = parse_bbox(a["answers_page_bounding_boxes"])
|
219 |
+
yield i, a
|
220 |
|
221 |
+
"""
|
222 |
# FIXES for faulty generation
|
223 |
+
# a.pop("answers_page_bounding_boxes") # fix later
|
224 |
+
if a["answers_page_bounding_boxes"] in [[], [[]]]:
|
225 |
a["answers_page_bounding_boxes"] = None
|
226 |
else:
|
227 |
+
if isinstance(a["answers_page_bounding_boxes"][0], list):
|
228 |
+
a["answers_page_bounding_boxes"] = a["answers_page_bounding_boxes"][0]
|
229 |
+
# if i == 2303:
|
230 |
+
try:
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Something wrong in {split}-{i} {e}")
|
233 |
+
"""
|
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
---
|
|
|
|
1 |
---
|
2 |
license: cc-by-4.0
|
3 |
---
|
4 |
+
|
data/DUDE_dataset-sample_gt.json
CHANGED
@@ -1,13 +1,24 @@
|
|
1 |
-
[
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
]
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"questionId": "0017b64bd017f06db47e56a6a113e22e_bb55e0af451429f2dcae69e6d0713616",
|
4 |
+
"question": "What is the first and last name of the indvidual in list # 539?",
|
5 |
+
"answers": [
|
6 |
+
"Ajay Dev Goud"
|
7 |
+
],
|
8 |
+
"answers_page_bounding_boxes": [
|
9 |
+
[
|
10 |
+
{
|
11 |
+
"left": 353,
|
12 |
+
"top": 409,
|
13 |
+
"width": 198,
|
14 |
+
"height": 26,
|
15 |
+
"page": 8
|
16 |
+
}
|
17 |
+
]
|
18 |
+
],
|
19 |
+
"answers_variants": [],
|
20 |
+
"answer_type": "extractive",
|
21 |
+
"docId": "0017b64bd017f06db47e56a6a113e22e",
|
22 |
+
"data_split": "train"
|
23 |
+
}
|
24 |
]
|
test_loader.py
CHANGED
@@ -19,10 +19,10 @@ from datasets import load_dataset
|
|
19 |
|
20 |
from codetiming import Timer
|
21 |
|
22 |
-
for binding in ["
|
23 |
with Timer(name=f"{binding}", text=binding + " Elapsed time: {:.4f} seconds"):
|
24 |
if binding == "dict_annotations (new)":
|
25 |
-
ds = load_dataset("../DUDE_loader/DUDE_loader.py")
|
26 |
else:
|
27 |
ds = load_dataset("jordyvl/DUDE_loader", revision='db20bbf751b14e14e8143170bc201948ef5ac83c')
|
28 |
|
|
|
19 |
|
20 |
from codetiming import Timer
|
21 |
|
22 |
+
for binding in ["dict_annotations (new)"]: #"dict_PDF",
|
23 |
with Timer(name=f"{binding}", text=binding + " Elapsed time: {:.4f} seconds"):
|
24 |
if binding == "dict_annotations (new)":
|
25 |
+
ds = load_dataset("../DUDE_loader/DUDE_loader.py", data_dir="/home/jordy/Downloads/DUDE_train-val-test_binaries", writer_batch_size=10) #ignore_verifications=True,
|
26 |
else:
|
27 |
ds = load_dataset("jordyvl/DUDE_loader", revision='db20bbf751b14e14e8143170bc201948ef5ac83c')
|
28 |
|