jppgks commited on
Commit
8250767
·
1 Parent(s): 6b546f5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -29,3 +29,44 @@ configs:
29
  [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) prepared for LLM fine-tuning
30
  by adding an `instruction` column and mapping the label from numeric to string (`{0:"negative", 1:'positive', 2:'neutral'}`).
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) prepared for LLM fine-tuning
30
  by adding an `instruction` column and mapping the label from numeric to string (`{0:"negative", 1:'positive', 2:'neutral'}`).
31
 
32
+ [Source](https://github.com/AI4Finance-Foundation/FinGPT/blob/master/fingpt/FinGPT-v3/data/making_data.ipynb)
33
+ ```python
34
+ from datasets import load_dataset
35
+ import datasets
36
+
37
+ from huggingface_hub import notebook_login
38
+ notebook_login()
39
+
40
+ ds = load_dataset('zeroshot/twitter-financial-news-sentiment')
41
+
42
+ num_to_label = {
43
+ 0: 'negative',
44
+ 1: 'positive',
45
+ 2: 'neutral',
46
+ }
47
+
48
+ instruction = 'What is the sentiment of this tweet? Please choose an answer from {negative/neutral/positive}.'
49
+
50
+ # Training split
51
+
52
+ ds_train = ds['train']
53
+ ds_train = ds_train.to_pandas()
54
+ ds_train['label'] = ds_train['label'].apply(num_to_label.get)
55
+ ds_train['instruction'] = instruction
56
+ ds_train.columns = ['input', 'output', 'instruction']
57
+ ds_train = datasets.Dataset.from_pandas(ds_train)
58
+
59
+ ds_train.push_to_hub("twitter-financial-news-sentiment")
60
+
61
+ # Validation split
62
+
63
+ ds_valid = ds['validation']
64
+ ds_valid = ds_valid.to_pandas()
65
+ ds_valid['label'] = ds_valid['label'].apply(num_to_label.get)
66
+ ds_valid['instruction'] = instruction
67
+ ds_valid.columns = ['input', 'output', 'instruction']
68
+ ds_valid = datasets.Dataset.from_pandas(ds_valid, split='validation')
69
+
70
+ ds_valid.push_to_hub("twitter-financial-news-sentiment", split='validation')
71
+ ```
72
+