Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K - 10K
License:
File size: 8,819 Bytes
2361927 72f0c4f 2361927 27753d4 2361927 3fedebe e9bb999 2361927 c6e9551 2361927 72f0c4f 2361927 f1ee938 2361927 f1ee938 72f0c4f f1ee938 72f0c4f 40ea8f9 27753d4 2361927 72f0c4f 2361927 f1ee938 72f0c4f 2361927 72f0c4f f1ee938 72f0c4f f1ee938 72f0c4f f1ee938 27753d4 f1ee938 40ea8f9 72f0c4f 27753d4 72f0c4f f1ee938 72f0c4f 27753d4 40ea8f9 27753d4 40ea8f9 27753d4 69e1d00 f1ee938 40ea8f9 f1ee938 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""ETPC: The Extended Typology Paraphrase Corpus"""
import os
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
import datasets
import numpy as np
from datasets.tasks import TextClassification
from lxml import etree
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{kovatchev-etal-2018-etpc,
title = "{ETPC} - A Paraphrase Identification Corpus Annotated with Extended Paraphrase Typology and Negation",
author = "Kovatchev, Venelin and
Mart{\'\i}, M. Ant{\`o}nia and
Salam{\'o}, Maria",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1221",
}
"""
_DESCRIPTION = """\
The EPT typology addresses several practical limitations of existing paraphrase typologies: it is the first typology that copes with the non-paraphrase pairs in the paraphrase identification corpora and distinguishes between contextual and habitual paraphrase types. ETPC is the largest corpus to date annotated with atomic paraphrase types.
"""
_HOMEPAGE = "https://github.com/venelink/ETPC"
_LICENSE = "Unknown"
_URLS = [
"https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/text_pairs.xml",
"https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/textual_paraphrases.xml",
]
class ETPC(datasets.GeneratorBasedBuilder):
"""ETPC dataset."""
VERSION = datasets.Version("0.95.0")
def _info(self):
features = datasets.Features(
{
"idx": datasets.Value("string"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"sentence1_tokenized": datasets.Sequence(
datasets.Value("string")
),
"sentence2_tokenized": datasets.Sequence(
datasets.Value("string")
),
"etpc_label": datasets.Value("int8"),
"mrpc_label": datasets.Value("int8"),
"negation": datasets.Value("int8"),
"paraphrase_types": datasets.Sequence(
datasets.Value("string")
),
"paraphrase_type_ids": datasets.Sequence(
datasets.Value("string")
),
"sentence1_segment_location": datasets.Sequence(
datasets.Value("int32")
),
"sentence2_segment_location": datasets.Sequence(
datasets.Value("int32")
),
"sentence1_segment_location_indices": datasets.Sequence(
datasets.Sequence(datasets.Value("int32"))
),
"sentence2_segment_location_indices": datasets.Sequence(
datasets.Sequence(datasets.Value("int32"))
),
"sentence1_segment_text": datasets.Sequence(
datasets.Value("string")
),
"sentence2_segment_text": datasets.Sequence(
datasets.Value("string")
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file_paths": dl_manager.iter_files(dl_dir),
},
),
]
def _generate_examples(self, file_paths):
file_paths = list(file_paths)
text_pairs_path = file_paths[0]
paraphrase_types_path = file_paths[1]
parser = etree.XMLParser(encoding="utf-8", recover=True)
tree_text_pairs = etree.parse(text_pairs_path, parser=parser)
tree_paraphrase_types = etree.parse(
paraphrase_types_path, parser=parser
)
root_text_pairs = tree_text_pairs.getroot()
root_paraphrase_types = tree_paraphrase_types.getroot()
idx = 0
for row in root_text_pairs:
current_pair_id = row.find(".//pair_id").text
paraphrase_types = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/type_name/text()"
)
paraphrase_type_ids = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/type_id/text()"
)
sentence1_segment_location = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/s1_scope/text()"
)
sentence2_segment_location = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/s2_scope/text()"
)
sentence1_segment_text = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/s1_text/text()"
)
sentence2_segment_text = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/s2_text/text()"
)
sentence1_tokenized = row.find(".//sent1_tokenized").text.split(
" "
)
sentence2_tokenized = row.find(".//sent2_tokenized").text.split(
" "
)
sentence1_segment_location_full = np.zeros(
len(sentence1_tokenized)
)
sentence2_segment_location_full = np.zeros(
len(sentence2_tokenized)
)
sentence1_segment_indices = []
sentence2_segment_indices = []
for (
sentence1_segment_locations,
sentence2_segment_locations,
paraphrase_type_id,
) in zip(
sentence1_segment_location,
sentence2_segment_location,
paraphrase_type_ids,
):
segment_locations_1 = [
int(i) for i in sentence1_segment_locations.split(",")
]
sentence1_segment_indices.append(segment_locations_1)
sentence1_segment_location_full[segment_locations_1] = [
paraphrase_type_id
] * len(segment_locations_1)
segment_locations_2 = [
int(i) for i in sentence2_segment_locations.split(",")
]
sentence2_segment_indices.append(segment_locations_2)
sentence2_segment_location_full[segment_locations_2] = [
paraphrase_type_id
] * len(segment_locations_2)
yield idx, {
"idx": row.find(".//pair_id").text + "_" + str(idx),
"sentence1": row.find(".//sent1_raw").text,
"sentence2": row.find(".//sent2_raw").text,
"sentence1_tokenized": sentence1_tokenized,
"sentence2_tokenized": sentence2_tokenized,
"etpc_label": int(row.find(".//etpc_label").text),
"mrpc_label": int(row.find(".//mrpc_label").text),
"negation": int(row.find(".//negation").text),
"paraphrase_types": paraphrase_types,
"paraphrase_type_ids": paraphrase_type_ids,
"sentence1_segment_location": sentence1_segment_location_full,
"sentence2_segment_location": sentence2_segment_location_full,
"sentence1_segment_location_indices": sentence1_segment_indices,
"sentence2_segment_location_indices": sentence2_segment_indices,
"sentence1_segment_text": sentence1_segment_text,
"sentence2_segment_text": sentence2_segment_text,
}
idx += 1
|