etpc / etpc.py
jpwahle's picture
Upload 2 files
2361927
raw
history blame
4.65 kB
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""ETPC: The Extended Typology Paraphrase Corpus"""
import os
from typing import Dict, Generator, Any, Union, Optional, List, Tuple
import datasets
from datasets.tasks import TextClassification
from lxml import etree
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{kovatchev-etal-2018-etpc,
title = "{ETPC} - A Paraphrase Identification Corpus Annotated with Extended Paraphrase Typology and Negation",
author = "Kovatchev, Venelin and
Mart{\'\i}, M. Ant{\`o}nia and
Salam{\'o}, Maria",
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)",
month = may,
year = "2018",
address = "Miyazaki, Japan",
publisher = "European Language Resources Association (ELRA)",
url = "https://aclanthology.org/L18-1221",
}
"""
_DESCRIPTION = """\
The EPT typology addresses several practical limitations of existing paraphrase typologies: it is the first typology that copes with the non-paraphrase pairs in the paraphrase identification corpora and distinguishes between contextual and habitual paraphrase types. ETPC is the largest corpus to date annotated with atomic paraphrase types.
"""
_HOMEPAGE = "https://github.com/venelink/ETPC"
_LICENSE = "Unknown"
_URLS = [
"https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/text_pairs.xml",
"https://raw.githubusercontent.com/venelink/ETPC/master/Corpus/textual_paraphrases.xml",
]
class Sst2(datasets.GeneratorBasedBuilder):
"""SST-2 dataset."""
VERSION = datasets.Version("2.0.0")
def _info(self):
features = datasets.Features(
{
"idx": datasets.Value("int32"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"etpc_label": datasets.Value("int8"),
"mrpc_label": datasets.Value("int8"),
"negation": datasets.Value("int8"),
"paraphrase_types": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file_paths": dl_manager.iter_files(dl_dir),
},
),
]
def _generate_examples(self, file_paths):
file_paths = list(file_paths)
text_pairs_path = file_paths[0]
paraphrase_types_path = file_paths[1]
parser = etree.XMLParser(encoding="utf-8", recover=True)
tree_text_pairs = etree.parse(text_pairs_path, parser=parser)
tree_paraphrase_types = etree.parse(paraphrase_types_path, parser=parser)
root_text_pairs = tree_text_pairs.getroot()
root_paraphrase_types = tree_paraphrase_types.getroot()
for idx, row in enumerate(root_text_pairs):
children = row.getchildren()
current_pair_id = row.find(".//pair_id").text
paraphrase_types = root_paraphrase_types.xpath(
f".//pair_id[text()='{current_pair_id}']/parent::relation/type_name/text()"
)
str_paraphrase_types = ",".join(paraphrase_types)
yield idx, {
"idx": int(row.find(".//pair_id").text)
if row.find(".//pair_id") is not None
else int(idx),
"sentence1": row.find(".//sent1_raw").text,
"sentence2": row.find(".//sent2_raw").text,
"etpc_label": int(row.find(".//etpc_label").text),
"mrpc_label": int(row.find(".//mrpc_label").text),
"negation": int(row.find(".//negation").text),
"paraphrase_types": str_paraphrase_types,
}