# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """E Corpus""" import re import datasets _CITATION = """\ @misc{E Dataset, title={E Dataset}, author={Jameson Quave}, howpublished{\\url{https://huggingface.co/jquave}}, year={2023} } """ _DESCRIPTION = """\ An open-source replication of E """ _N_DATA_FILES = 17 _N_DATA_FILES = 1 _DATA_FILES = ["ethereum_{:02d}.tar".format(i) for i in range(_N_DATA_FILES)] print(_DATA_FILES) class EDataset(datasets.GeneratorBasedBuilder): """The E dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", description="Plain text", version=datasets.Version("1.0.0"), ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"train": datasets.Value("string")}), homepage="https://huggingface.co/jquave", citation=_CITATION, ) def _split_generators(self, dl_manager): archives = dl_manager.download(_DATA_FILES) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "archive_iterators": [ dl_manager.iter_archive(archive) for archive in archives ], "iter_archive": dl_manager.iter_archive }), ] def _generate_examples(self, archive_iterators, iter_archive): """Yields examples.""" for archive_iterator in archive_iterators: for code_path, code_f in archive_iterator: if code_path.endswith(".sol.txt") or code_path.endswith(".sol"): yield code_path, {"train": code_f.read().decode("utf-8").strip()}