File size: 4,746 Bytes
4098c64
51352b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4098c64
4786eb8
51352b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
language:
- pt
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
source_datasets:
- extended|rebel-dataset
pretty_name: rebel-portuguese
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text-retrieval
- conditional-text-generation
task_ids:
- text-retrieval-other-relation-extraction
---
# Dataset Card for REBEL-Portuguese

## Table of Contents

- [Dataset Card for REBEL-Portuguese](#dataset-card-for-rebel)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Repository:** [https://github.com/Babelscape/rebel](https://github.com/Babelscape/rebel)
- **Paper:** [https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf)
- **Point of Contact:** [julianarsg13@gmail.com](julianarsg13@gmail.com)

### Dataset Summary

Dataset adapted to Portuguese from [REBEL-dataset](https://huggingface.co/datasets/Babelscape/rebel-dataset) .

### Supported Tasks and Leaderboards

- `text-retrieval-other-relation-extraction`: The dataset can be used to train a model for Relation Extraction, which consists in extracting triplets from raw text, made of subject, object and relation type. Success on this task is typically measured by achieving a *high* [F1](https://huggingface.co/metrics/F1). The [BART](https://huggingface.co/transformers/model_doc/bart.html)) model currently achieves the following score: 74 Micro F1 and 51 Macro F1 for the 220 most frequent relation types.

### Languages

The dataset is in Portuguese, from the Portuguese Wikipedia.

## Dataset Structure

### Data Instances

### Data Fields

### Data Splits

## Dataset Creation

### Curation Rationale

### Source Data

Data comes from Wikipedia text before the table of contents, as well as Wikidata for the triplets annotation.

#### Initial Data Collection and Normalization

For the data collection, the dataset extraction pipeline [cRocoDiLe: Automati**c** **R**elati**o**n Extra**c**ti**o**n **D**ataset w**i**th N**L**I filt**e**ring](https://github.com/Babelscape/crocodile) insipired by [T-REx Pipeline](https://github.com/hadyelsahar/RE-NLG-Dataset) more details found at: [T-REx Website](https://hadyelsahar.github.io/t-rex/). The starting point is a Wikipedia dump as well as a Wikidata one.
After the triplets are extracted, an NLI system was used to filter out those not entailed by the text.

#### Who are the source language producers?

Any Wikipedia and Wikidata contributor.

### Annotations

#### Annotation process

The dataset extraction pipeline [cRocoDiLe: Automati**c** **R**elati**o**n Extra**c**ti**o**n **D**ataset w**i**th N**L**I filt**e**ring](https://github.com/ju-resplande/crocodile).

#### Who are the annotators?

Automatic annottations

### Personal and Sensitive Information

All text is from Wikipedia, any Personal or Sensitive Information there may be present in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

### Discussion of Biases

### Other Known Limitations

Not for now

## Additional Information

### Dataset Curators

### Licensing Information

### Citation Information

### Contributions

Thanks to [@ju-resplande](https://github.com/ju-resplade) for adding this dataset.