update
Browse files- copa.jsonl +3 -0
- notebooks/.ipynb_checkpoints/convert-lm-eval-harness-checkpoint.ipynb +181 -80
- notebooks/convert-lm-eval-harness.ipynb +181 -80
- piqa.jsonl +3 -0
- winogrande.jsonl +3 -0
copa.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:261a8413a7fa5af6b129dee1c435976f4c7086187c5ea3dd5fd14939ee14bb92
|
3 |
+
size 40851
|
notebooks/.ipynb_checkpoints/convert-lm-eval-harness-checkpoint.ipynb
CHANGED
@@ -2,69 +2,46 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
|
7 |
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import json\n",
|
11 |
-
"from datasets import load_dataset"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 5,
|
17 |
-
"id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
|
18 |
-
"metadata": {},
|
19 |
"outputs": [
|
20 |
{
|
21 |
"name": "stderr",
|
22 |
"output_type": "stream",
|
23 |
"text": [
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-aec62727e66b6615.arrow\n",
|
27 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-e645cff193ea8a1d.arrow\n",
|
28 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-70b4a183b087a019.arrow\n"
|
29 |
]
|
30 |
}
|
31 |
],
|
32 |
"source": [
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"data.shuffle(seed=42)\n",
|
36 |
-
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
37 |
-
" for i_item, item in enumerate(data['train']):\n",
|
38 |
-
" text = item['ctx'] + item['endings'][int(item['label'])]\n",
|
39 |
-
" f.write(\n",
|
40 |
-
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
41 |
-
" )"
|
42 |
]
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
-
"execution_count":
|
47 |
-
"id": "
|
48 |
"metadata": {},
|
49 |
"outputs": [
|
50 |
{
|
51 |
"name": "stderr",
|
52 |
"output_type": "stream",
|
53 |
"text": [
|
54 |
-
"Found cached dataset
|
55 |
-
"100
|
56 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-b77c77fd8280863e.arrow\n",
|
57 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-a6a68560e7f35615.arrow\n"
|
58 |
]
|
59 |
}
|
60 |
],
|
61 |
"source": [
|
62 |
-
"task_name = '
|
63 |
"data = load_dataset(task_name)\n",
|
64 |
"data.shuffle(seed=42)\n",
|
65 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
66 |
" for i_item, item in enumerate(data['train']):\n",
|
67 |
-
" text =
|
68 |
" f.write(\n",
|
69 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
70 |
" )"
|
@@ -72,31 +49,52 @@
|
|
72 |
},
|
73 |
{
|
74 |
"cell_type": "code",
|
75 |
-
"execution_count":
|
76 |
-
"id": "
|
77 |
"metadata": {},
|
78 |
"outputs": [
|
79 |
{
|
80 |
"name": "stderr",
|
81 |
"output_type": "stream",
|
82 |
"text": [
|
83 |
-
"Downloading builder script: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
84 |
-
"Downloading metadata: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
85 |
-
"Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
86 |
]
|
87 |
},
|
88 |
{
|
89 |
"name": "stdout",
|
90 |
"output_type": "stream",
|
91 |
"text": [
|
92 |
-
"Downloading and preparing dataset
|
93 |
]
|
94 |
},
|
95 |
{
|
96 |
"name": "stderr",
|
97 |
"output_type": "stream",
|
98 |
"text": [
|
99 |
-
"Downloading data:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
" \r"
|
101 |
]
|
102 |
},
|
@@ -104,14 +102,41 @@
|
|
104 |
"name": "stdout",
|
105 |
"output_type": "stream",
|
106 |
"text": [
|
107 |
-
"Dataset
|
108 |
]
|
109 |
},
|
110 |
{
|
111 |
"name": "stderr",
|
112 |
"output_type": "stream",
|
113 |
"text": [
|
114 |
-
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
]
|
116 |
}
|
117 |
],
|
@@ -132,49 +157,138 @@
|
|
132 |
},
|
133 |
{
|
134 |
"cell_type": "code",
|
135 |
-
"execution_count":
|
136 |
"id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
139 |
{
|
140 |
-
"name": "
|
141 |
"output_type": "stream",
|
142 |
"text": [
|
143 |
-
"
|
|
|
144 |
]
|
145 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
{
|
147 |
"name": "stderr",
|
148 |
"output_type": "stream",
|
149 |
"text": [
|
150 |
-
"
|
|
|
|
|
|
|
|
|
151 |
]
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
{
|
154 |
-
"name": "
|
155 |
"output_type": "stream",
|
156 |
"text": [
|
157 |
-
"
|
|
|
|
|
|
|
|
|
158 |
]
|
159 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
{
|
161 |
"name": "stderr",
|
162 |
"output_type": "stream",
|
163 |
"text": [
|
164 |
-
"
|
|
|
|
|
|
|
|
|
165 |
]
|
166 |
}
|
167 |
],
|
168 |
"source": [
|
169 |
-
"task_name = '
|
170 |
-
"data = load_dataset(
|
171 |
"data.shuffle(seed=42)\n",
|
172 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
173 |
" for i_item, item in enumerate(data['train']):\n",
|
174 |
-
" i_a = item['
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
|
|
178 |
" f.write(\n",
|
179 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
180 |
" )"
|
@@ -182,42 +296,29 @@
|
|
182 |
},
|
183 |
{
|
184 |
"cell_type": "code",
|
185 |
-
"execution_count":
|
186 |
-
"id": "
|
187 |
"metadata": {},
|
188 |
"outputs": [
|
189 |
{
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
|
194 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
195 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
196 |
-
"Cell \u001b[0;32mIn[18], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mjuewang/target-data\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
197 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1785\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1780\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 1781\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 1782\u001b[0m )\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 1785\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1786\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1789\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1790\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1791\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1792\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1793\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1794\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1795\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1796\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1797\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1798\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1800\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 1801\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
|
198 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1514\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1512\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 1513\u001b[0m download_config\u001b[38;5;241m.\u001b[39muse_auth_token \u001b[38;5;241m=\u001b[39m use_auth_token\n\u001b[0;32m-> 1514\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1515\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1516\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1517\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1518\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1519\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1520\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1521\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m import_main_class(dataset_module\u001b[38;5;241m.\u001b[39mmodule_path)\n",
|
199 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1227\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\u001b[0m\n\u001b[1;32m 1225\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e1 \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1226\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e1, \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m):\n\u001b[0;32m-> 1227\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(\n\u001b[1;32m 1228\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt find a dataset script at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrelative_to_absolute_path(combined_path)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m or any data file in the same directory. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1229\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt find \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m on the Hugging Face Hub either: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(e1)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00me1\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1230\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1231\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e1 \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1232\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
200 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m: Couldn't find a dataset script at /var/cr06_data/jue@together.xyz/target-data/notebooks/juewang/target-data/target-data.py or any data file in the same directory. Couldn't find 'juewang/target-data' on the Hugging Face Hub either: FileNotFoundError: Unable to resolve any data file that matches ['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**'] in dataset repository juewang/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']"
|
201 |
]
|
202 |
}
|
203 |
],
|
204 |
"source": [
|
205 |
-
"
|
206 |
]
|
207 |
},
|
208 |
{
|
209 |
"cell_type": "code",
|
210 |
"execution_count": null,
|
211 |
-
"id": "
|
212 |
"metadata": {},
|
213 |
"outputs": [],
|
214 |
"source": []
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"cell_type": "raw",
|
218 |
-
"id": "1e0b7ea2-5112-4118-b4ab-f0df5ef2bdc6",
|
219 |
-
"metadata": {},
|
220 |
-
"source": []
|
221 |
}
|
222 |
],
|
223 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
|
7 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"outputs": [
|
9 |
{
|
10 |
"name": "stderr",
|
11 |
"output_type": "stream",
|
12 |
"text": [
|
13 |
+
"/home/jue@together.xyz/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
|
|
|
|
|
15 |
]
|
16 |
}
|
17 |
],
|
18 |
"source": [
|
19 |
+
"import json\n",
|
20 |
+
"from datasets import load_dataset"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
]
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
|
27 |
"metadata": {},
|
28 |
"outputs": [
|
29 |
{
|
30 |
"name": "stderr",
|
31 |
"output_type": "stream",
|
32 |
"text": [
|
33 |
+
"Found cached dataset hellaswag (/home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae)\n",
|
34 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 53.00it/s]\n"
|
|
|
|
|
35 |
]
|
36 |
}
|
37 |
],
|
38 |
"source": [
|
39 |
+
"task_name = 'hellaswag'\n",
|
40 |
"data = load_dataset(task_name)\n",
|
41 |
"data.shuffle(seed=42)\n",
|
42 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
43 |
" for i_item, item in enumerate(data['train']):\n",
|
44 |
+
" text = item['ctx'] + item['endings'][int(item['label'])]\n",
|
45 |
" f.write(\n",
|
46 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
47 |
" )"
|
|
|
49 |
},
|
50 |
{
|
51 |
"cell_type": "code",
|
52 |
+
"execution_count": 3,
|
53 |
+
"id": "c42aae00-be85-4b64-9325-f6a6139c6ee6",
|
54 |
"metadata": {},
|
55 |
"outputs": [
|
56 |
{
|
57 |
"name": "stderr",
|
58 |
"output_type": "stream",
|
59 |
"text": [
|
60 |
+
"Downloading builder script: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3.38k/3.38k [00:00<00:00, 32.1MB/s]\n",
|
61 |
+
"Downloading metadata: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1.91k/1.91k [00:00<00:00, 20.0MB/s]\n",
|
62 |
+
"Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6.60k/6.60k [00:00<00:00, 45.1MB/s]\n"
|
63 |
]
|
64 |
},
|
65 |
{
|
66 |
"name": "stdout",
|
67 |
"output_type": "stream",
|
68 |
"text": [
|
69 |
+
"Downloading and preparing dataset boolq/default to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5...\n"
|
70 |
]
|
71 |
},
|
72 |
{
|
73 |
"name": "stderr",
|
74 |
"output_type": "stream",
|
75 |
"text": [
|
76 |
+
"Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]\n",
|
77 |
+
"Downloading data: 0%| | 0.00/6.53M [00:00<?, ?B/s]\u001b[A\n",
|
78 |
+
"Downloading data: 0%|β | 17.4k/6.53M [00:00<00:43, 150kB/s]\u001b[A\n",
|
79 |
+
"Downloading data: 1%|ββ | 54.3k/6.53M [00:00<00:26, 246kB/s]\u001b[A\n",
|
80 |
+
"Downloading data: 2%|βββ | 104k/6.53M [00:00<00:18, 346kB/s]\u001b[A\n",
|
81 |
+
"Downloading data: 3%|βββββ | 197k/6.53M [00:00<00:11, 554kB/s]\u001b[A\n",
|
82 |
+
"Downloading data: 5%|ββββββββ | 343k/6.53M [00:00<00:07, 865kB/s]\u001b[A\n",
|
83 |
+
"Downloading data: 10%|ββββββββββββββ | 623k/6.53M [00:00<00:03, 1.50MB/s]\u001b[A\n",
|
84 |
+
"Downloading data: 17%|βββββββββββββββββββββββββ | 1.12M/6.53M [00:00<00:02, 2.58MB/s]\u001b[A\n",
|
85 |
+
"Downloading data: 31%|ββββββββββββββββββββββββββββββββββββββββββββββ | 2.05M/6.53M [00:00<00:00, 4.67MB/s]\u001b[A\n",
|
86 |
+
"Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6.53M/6.53M [00:01<00:00, 6.28MB/s]\u001b[A\n",
|
87 |
+
"Downloading data files: 50%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 1/2 [00:01<00:01, 1.95s/it]\n",
|
88 |
+
"Downloading data: 0%| | 0.00/2.24M [00:00<?, ?B/s]\u001b[A\n",
|
89 |
+
"Downloading data: 1%|ββ | 17.4k/2.24M [00:00<00:14, 150kB/s]\u001b[A\n",
|
90 |
+
"Downloading data: 2%|ββββ | 54.3k/2.24M [00:00<00:08, 246kB/s]\u001b[A\n",
|
91 |
+
"Downloading data: 5%|βββββββ | 104k/2.24M [00:00<00:06, 347kB/s]\u001b[A\n",
|
92 |
+
"Downloading data: 9%|βββββββββββββ | 195k/2.24M [00:00<00:03, 549kB/s]\u001b[A\n",
|
93 |
+
"Downloading data: 15%|βββββββββββββββββββββββ | 341k/2.24M [00:00<00:02, 863kB/s]\u001b[A\n",
|
94 |
+
"Downloading data: 28%|ββββββββββββββββββββββββββββββββββββββββ | 617k/2.24M [00:00<00:01, 1.49MB/s]\u001b[A\n",
|
95 |
+
"Downloading data: 49%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 1.09M/2.24M [00:00<00:00, 2.53MB/s]\u001b[A\n",
|
96 |
+
"Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2.24M/2.24M [00:00<00:00, 2.61MB/s]\u001b[A\n",
|
97 |
+
"Downloading data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:03<00:00, 1.85s/it]\n",
|
98 |
" \r"
|
99 |
]
|
100 |
},
|
|
|
102 |
"name": "stdout",
|
103 |
"output_type": "stream",
|
104 |
"text": [
|
105 |
+
"Dataset boolq downloaded and prepared to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5. Subsequent calls will reuse this data.\n"
|
106 |
]
|
107 |
},
|
108 |
{
|
109 |
"name": "stderr",
|
110 |
"output_type": "stream",
|
111 |
"text": [
|
112 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 139.08it/s]\n"
|
113 |
+
]
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"task_name = 'boolq'\n",
|
118 |
+
"data = load_dataset(task_name)\n",
|
119 |
+
"data.shuffle(seed=42)\n",
|
120 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
121 |
+
" for i_item, item in enumerate(data['train']):\n",
|
122 |
+
" text = f\"{item['passage']}\\nQuestion: {item['question']}?\\nAnswer: {item['answer']}\"\n",
|
123 |
+
" f.write(\n",
|
124 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
125 |
+
" )"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 4,
|
131 |
+
"id": "878216f4-74e4-46ba-bfcd-c95348c10415",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stderr",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n",
|
139 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 624.09it/s]\n"
|
140 |
]
|
141 |
}
|
142 |
],
|
|
|
157 |
},
|
158 |
{
|
159 |
"cell_type": "code",
|
160 |
+
"execution_count": 5,
|
161 |
"id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
|
162 |
"metadata": {},
|
163 |
"outputs": [
|
164 |
{
|
165 |
+
"name": "stderr",
|
166 |
"output_type": "stream",
|
167 |
"text": [
|
168 |
+
"Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n",
|
169 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 426.87it/s]\n"
|
170 |
]
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"source": [
|
174 |
+
"task_name = 'arc_easy'\n",
|
175 |
+
"data = load_dataset('ai2_arc', 'ARC-Easy')\n",
|
176 |
+
"data.shuffle(seed=42)\n",
|
177 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
178 |
+
" for i_item, item in enumerate(data['train']):\n",
|
179 |
+
" i_a = item['choices']['label'].index(item['answerKey'])\n",
|
180 |
+
" q = item['question']\n",
|
181 |
+
" a = item['choices']['text'][i_a]\n",
|
182 |
+
" text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
|
183 |
+
" f.write(\n",
|
184 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
185 |
+
" )"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 6,
|
191 |
+
"id": "9347c339-4559-4111-bf44-ce2b624edc9e",
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [
|
194 |
{
|
195 |
"name": "stderr",
|
196 |
"output_type": "stream",
|
197 |
"text": [
|
198 |
+
"Found cached dataset super_glue (/home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed)\n",
|
199 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 1055.52it/s]\n",
|
200 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-06e156489a3d17ef.arrow\n",
|
201 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-f4bd523109c343ed.arrow\n",
|
202 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-b8d0981688b46f46.arrow\n"
|
203 |
]
|
204 |
+
}
|
205 |
+
],
|
206 |
+
"source": [
|
207 |
+
"task_name = 'copa'\n",
|
208 |
+
"data = load_dataset('super_glue', task_name)\n",
|
209 |
+
"data.shuffle(seed=42)\n",
|
210 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
211 |
+
" for i_item, item in enumerate(data['train']):\n",
|
212 |
+
" i_a = item['label']\n",
|
213 |
+
" premise = item['premise']\n",
|
214 |
+
" question = item['question']\n",
|
215 |
+
" choice = item['choice1'] if i_a == 0 else item['choice2']\n",
|
216 |
+
" choice = choice[0].lower() + choice[1:]\n",
|
217 |
+
"\n",
|
218 |
+
" connector = {\n",
|
219 |
+
" \"cause\": \"because\",\n",
|
220 |
+
" \"effect\": \"therefore\",\n",
|
221 |
+
" }[question]\n",
|
222 |
+
"\n",
|
223 |
+
" text = premise.strip()[:-1] + f\" {connector}\" + ' ' + choice\n",
|
224 |
+
" f.write(\n",
|
225 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
226 |
+
" )"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 7,
|
232 |
+
"id": "dc24ba3b-aa6a-4665-87aa-08471a87de9b",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
{
|
236 |
+
"name": "stderr",
|
237 |
"output_type": "stream",
|
238 |
"text": [
|
239 |
+
"Found cached dataset piqa (/home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011)\n",
|
240 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½βββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 910.95it/s]\n",
|
241 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-64434cd628e6e9e0.arrow\n",
|
242 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-97a6e3c466ced62d.arrow\n",
|
243 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-6b1e5924150382c7.arrow\n"
|
244 |
]
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"task_name = 'piqa'\n",
|
249 |
+
"data = load_dataset(task_name)\n",
|
250 |
+
"data.shuffle(seed=42)\n",
|
251 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
252 |
+
" for i_item, item in enumerate(data['train']):\n",
|
253 |
+
" i_a = item['label']\n",
|
254 |
+
" goal = item['goal']\n",
|
255 |
+
" sol = item['sol1'] if i_a == 0 else item['sol2']\n",
|
256 |
+
"\n",
|
257 |
+
" text = \"Question: \" + goal + \"\\nAnswer: \" + sol\n",
|
258 |
+
" f.write(\n",
|
259 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
260 |
+
" )"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 8,
|
266 |
+
"id": "501744bd-0260-4a3c-89dc-df264ff3306e",
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [
|
269 |
{
|
270 |
"name": "stderr",
|
271 |
"output_type": "stream",
|
272 |
"text": [
|
273 |
+
"Found cached dataset winogrande (/home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2)\n",
|
274 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 1014.75it/s]\n",
|
275 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ebcf1ebbadaf243c.arrow\n",
|
276 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ea79c2b85e9d846f.arrow\n",
|
277 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-5aca6c830a1dfa33.arrow\n"
|
278 |
]
|
279 |
}
|
280 |
],
|
281 |
"source": [
|
282 |
+
"task_name = 'winogrande'\n",
|
283 |
+
"data = load_dataset(task_name, 'winogrande_xl')\n",
|
284 |
"data.shuffle(seed=42)\n",
|
285 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
286 |
" for i_item, item in enumerate(data['train']):\n",
|
287 |
+
" i_a = item['answer']\n",
|
288 |
+
" sentence = item['sentence']\n",
|
289 |
+
" option = item['option1'] if i_a == 1 else item['option2']\n",
|
290 |
+
" \n",
|
291 |
+
" text = sentence.replace('_', option)\n",
|
292 |
" f.write(\n",
|
293 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
294 |
" )"
|
|
|
296 |
},
|
297 |
{
|
298 |
"cell_type": "code",
|
299 |
+
"execution_count": 9,
|
300 |
+
"id": "65d4b641-2b78-476f-89ac-6ecb48e7d044",
|
301 |
"metadata": {},
|
302 |
"outputs": [
|
303 |
{
|
304 |
+
"name": "stderr",
|
305 |
+
"output_type": "stream",
|
306 |
+
"text": [
|
307 |
+
"Found cached dataset json (/home/jue@together.xyz/.cache/huggingface/datasets/juewang___json/juewang--target-data-72e09ed206c54e99/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
]
|
309 |
}
|
310 |
],
|
311 |
"source": [
|
312 |
+
"dataset = load_dataset(\"juewang/target-data\", data_files='*.jsonl', split='train')"
|
313 |
]
|
314 |
},
|
315 |
{
|
316 |
"cell_type": "code",
|
317 |
"execution_count": null,
|
318 |
+
"id": "a0554b4f-c5c0-4621-8b91-3daf05e6fbdf",
|
319 |
"metadata": {},
|
320 |
"outputs": [],
|
321 |
"source": []
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
}
|
323 |
],
|
324 |
"metadata": {
|
notebooks/convert-lm-eval-harness.ipynb
CHANGED
@@ -2,69 +2,46 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
|
7 |
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import json\n",
|
11 |
-
"from datasets import load_dataset"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 5,
|
17 |
-
"id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
|
18 |
-
"metadata": {},
|
19 |
"outputs": [
|
20 |
{
|
21 |
"name": "stderr",
|
22 |
"output_type": "stream",
|
23 |
"text": [
|
24 |
-
"
|
25 |
-
"
|
26 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-aec62727e66b6615.arrow\n",
|
27 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-e645cff193ea8a1d.arrow\n",
|
28 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae/cache-70b4a183b087a019.arrow\n"
|
29 |
]
|
30 |
}
|
31 |
],
|
32 |
"source": [
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"data.shuffle(seed=42)\n",
|
36 |
-
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
37 |
-
" for i_item, item in enumerate(data['train']):\n",
|
38 |
-
" text = item['ctx'] + item['endings'][int(item['label'])]\n",
|
39 |
-
" f.write(\n",
|
40 |
-
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
41 |
-
" )"
|
42 |
]
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
-
"execution_count":
|
47 |
-
"id": "
|
48 |
"metadata": {},
|
49 |
"outputs": [
|
50 |
{
|
51 |
"name": "stderr",
|
52 |
"output_type": "stream",
|
53 |
"text": [
|
54 |
-
"Found cached dataset
|
55 |
-
"100
|
56 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-b77c77fd8280863e.arrow\n",
|
57 |
-
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5/cache-a6a68560e7f35615.arrow\n"
|
58 |
]
|
59 |
}
|
60 |
],
|
61 |
"source": [
|
62 |
-
"task_name = '
|
63 |
"data = load_dataset(task_name)\n",
|
64 |
"data.shuffle(seed=42)\n",
|
65 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
66 |
" for i_item, item in enumerate(data['train']):\n",
|
67 |
-
" text =
|
68 |
" f.write(\n",
|
69 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
70 |
" )"
|
@@ -72,31 +49,52 @@
|
|
72 |
},
|
73 |
{
|
74 |
"cell_type": "code",
|
75 |
-
"execution_count":
|
76 |
-
"id": "
|
77 |
"metadata": {},
|
78 |
"outputs": [
|
79 |
{
|
80 |
"name": "stderr",
|
81 |
"output_type": "stream",
|
82 |
"text": [
|
83 |
-
"Downloading builder script: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
84 |
-
"Downloading metadata: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
85 |
-
"Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
86 |
]
|
87 |
},
|
88 |
{
|
89 |
"name": "stdout",
|
90 |
"output_type": "stream",
|
91 |
"text": [
|
92 |
-
"Downloading and preparing dataset
|
93 |
]
|
94 |
},
|
95 |
{
|
96 |
"name": "stderr",
|
97 |
"output_type": "stream",
|
98 |
"text": [
|
99 |
-
"Downloading data:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
" \r"
|
101 |
]
|
102 |
},
|
@@ -104,14 +102,41 @@
|
|
104 |
"name": "stdout",
|
105 |
"output_type": "stream",
|
106 |
"text": [
|
107 |
-
"Dataset
|
108 |
]
|
109 |
},
|
110 |
{
|
111 |
"name": "stderr",
|
112 |
"output_type": "stream",
|
113 |
"text": [
|
114 |
-
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
]
|
116 |
}
|
117 |
],
|
@@ -132,49 +157,138 @@
|
|
132 |
},
|
133 |
{
|
134 |
"cell_type": "code",
|
135 |
-
"execution_count":
|
136 |
"id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
|
137 |
"metadata": {},
|
138 |
"outputs": [
|
139 |
{
|
140 |
-
"name": "
|
141 |
"output_type": "stream",
|
142 |
"text": [
|
143 |
-
"
|
|
|
144 |
]
|
145 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
{
|
147 |
"name": "stderr",
|
148 |
"output_type": "stream",
|
149 |
"text": [
|
150 |
-
"
|
|
|
|
|
|
|
|
|
151 |
]
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
{
|
154 |
-
"name": "
|
155 |
"output_type": "stream",
|
156 |
"text": [
|
157 |
-
"
|
|
|
|
|
|
|
|
|
158 |
]
|
159 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
{
|
161 |
"name": "stderr",
|
162 |
"output_type": "stream",
|
163 |
"text": [
|
164 |
-
"
|
|
|
|
|
|
|
|
|
165 |
]
|
166 |
}
|
167 |
],
|
168 |
"source": [
|
169 |
-
"task_name = '
|
170 |
-
"data = load_dataset(
|
171 |
"data.shuffle(seed=42)\n",
|
172 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
173 |
" for i_item, item in enumerate(data['train']):\n",
|
174 |
-
" i_a = item['
|
175 |
-
"
|
176 |
-
"
|
177 |
-
"
|
|
|
178 |
" f.write(\n",
|
179 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
180 |
" )"
|
@@ -182,42 +296,29 @@
|
|
182 |
},
|
183 |
{
|
184 |
"cell_type": "code",
|
185 |
-
"execution_count":
|
186 |
-
"id": "
|
187 |
"metadata": {},
|
188 |
"outputs": [
|
189 |
{
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
|
194 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
195 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
196 |
-
"Cell \u001b[0;32mIn[18], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mjuewang/target-data\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msplit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrain\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
197 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1785\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1780\u001b[0m verification_mode \u001b[38;5;241m=\u001b[39m VerificationMode(\n\u001b[1;32m 1781\u001b[0m (verification_mode \u001b[38;5;129;01mor\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mBASIC_CHECKS) \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m save_infos \u001b[38;5;28;01melse\u001b[39;00m VerificationMode\u001b[38;5;241m.\u001b[39mALL_CHECKS\n\u001b[1;32m 1782\u001b[0m )\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;66;03m# Create a dataset builder\u001b[39;00m\n\u001b[0;32m-> 1785\u001b[0m builder_instance \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset_builder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1786\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1789\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1790\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1791\u001b[0m \u001b[43m \u001b[49m\u001b[43mfeatures\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfeatures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1792\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1793\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1794\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1795\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_auth_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_auth_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1796\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1797\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mconfig_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1798\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1800\u001b[0m \u001b[38;5;66;03m# Return iterable dataset in case of streaming\u001b[39;00m\n\u001b[1;32m 1801\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m streaming:\n",
|
198 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1514\u001b[0m, in \u001b[0;36mload_dataset_builder\u001b[0;34m(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\u001b[0m\n\u001b[1;32m 1512\u001b[0m download_config \u001b[38;5;241m=\u001b[39m download_config\u001b[38;5;241m.\u001b[39mcopy() \u001b[38;5;28;01mif\u001b[39;00m download_config \u001b[38;5;28;01melse\u001b[39;00m DownloadConfig()\n\u001b[1;32m 1513\u001b[0m download_config\u001b[38;5;241m.\u001b[39muse_auth_token \u001b[38;5;241m=\u001b[39m use_auth_token\n\u001b[0;32m-> 1514\u001b[0m dataset_module \u001b[38;5;241m=\u001b[39m \u001b[43mdataset_module_factory\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1515\u001b[0m \u001b[43m \u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1516\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1517\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1518\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1519\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1520\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_files\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1521\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1523\u001b[0m \u001b[38;5;66;03m# Get dataset builder class from the processing script\u001b[39;00m\n\u001b[1;32m 1524\u001b[0m builder_cls \u001b[38;5;241m=\u001b[39m import_main_class(dataset_module\u001b[38;5;241m.\u001b[39mmodule_path)\n",
|
199 |
-
"File \u001b[0;32m~/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/datasets/load.py:1227\u001b[0m, in \u001b[0;36mdataset_module_factory\u001b[0;34m(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\u001b[0m\n\u001b[1;32m 1225\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e1 \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1226\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(e1, \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m):\n\u001b[0;32m-> 1227\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(\n\u001b[1;32m 1228\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt find a dataset script at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrelative_to_absolute_path(combined_path)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m or any data file in the same directory. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1229\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCouldn\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mt find \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpath\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m on the Hugging Face Hub either: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(e1)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00me1\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1230\u001b[0m ) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1231\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e1 \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1232\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n",
|
200 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m: Couldn't find a dataset script at /var/cr06_data/jue@together.xyz/target-data/notebooks/juewang/target-data/target-data.py or any data file in the same directory. Couldn't find 'juewang/target-data' on the Hugging Face Hub either: FileNotFoundError: Unable to resolve any data file that matches ['test[-._ 0-9/]**', '**[-._ 0-9/]test[-._ 0-9/]**', 'testing[-._ 0-9/]**', '**[-._ 0-9/]testing[-._ 0-9/]**', 'eval[-._ 0-9/]**', '**[-._ 0-9/]eval[-._ 0-9/]**', 'evaluation[-._ 0-9/]**', '**[-._ 0-9/]evaluation[-._ 0-9/]**'] in dataset repository juewang/target-data with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.arrow', '.txt', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip']"
|
201 |
]
|
202 |
}
|
203 |
],
|
204 |
"source": [
|
205 |
-
"
|
206 |
]
|
207 |
},
|
208 |
{
|
209 |
"cell_type": "code",
|
210 |
"execution_count": null,
|
211 |
-
"id": "
|
212 |
"metadata": {},
|
213 |
"outputs": [],
|
214 |
"source": []
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"cell_type": "raw",
|
218 |
-
"id": "1e0b7ea2-5112-4118-b4ab-f0df5ef2bdc6",
|
219 |
-
"metadata": {},
|
220 |
-
"source": []
|
221 |
}
|
222 |
],
|
223 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "c975c670-97cc-453e-bba6-3639cf8d5e89",
|
7 |
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
"outputs": [
|
9 |
{
|
10 |
"name": "stderr",
|
11 |
"output_type": "stream",
|
12 |
"text": [
|
13 |
+
"/home/jue@together.xyz/miniconda3/envs/nebula-fav2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
14 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
|
|
|
|
|
|
15 |
]
|
16 |
}
|
17 |
],
|
18 |
"source": [
|
19 |
+
"import json\n",
|
20 |
+
"from datasets import load_dataset"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
]
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": 2,
|
26 |
+
"id": "e818dca8-bd10-4b89-9fcd-5cd9252b4e07",
|
27 |
"metadata": {},
|
28 |
"outputs": [
|
29 |
{
|
30 |
"name": "stderr",
|
31 |
"output_type": "stream",
|
32 |
"text": [
|
33 |
+
"Found cached dataset hellaswag (/home/jue@together.xyz/.cache/huggingface/datasets/hellaswag/default/0.1.0/512a66dd8b1b1643ab4a48aa4f150d04c91680da6a4096498a5e5f799623d5ae)\n",
|
34 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 53.00it/s]\n"
|
|
|
|
|
35 |
]
|
36 |
}
|
37 |
],
|
38 |
"source": [
|
39 |
+
"task_name = 'hellaswag'\n",
|
40 |
"data = load_dataset(task_name)\n",
|
41 |
"data.shuffle(seed=42)\n",
|
42 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
43 |
" for i_item, item in enumerate(data['train']):\n",
|
44 |
+
" text = item['ctx'] + item['endings'][int(item['label'])]\n",
|
45 |
" f.write(\n",
|
46 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
47 |
" )"
|
|
|
49 |
},
|
50 |
{
|
51 |
"cell_type": "code",
|
52 |
+
"execution_count": 3,
|
53 |
+
"id": "c42aae00-be85-4b64-9325-f6a6139c6ee6",
|
54 |
"metadata": {},
|
55 |
"outputs": [
|
56 |
{
|
57 |
"name": "stderr",
|
58 |
"output_type": "stream",
|
59 |
"text": [
|
60 |
+
"Downloading builder script: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3.38k/3.38k [00:00<00:00, 32.1MB/s]\n",
|
61 |
+
"Downloading metadata: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1.91k/1.91k [00:00<00:00, 20.0MB/s]\n",
|
62 |
+
"Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6.60k/6.60k [00:00<00:00, 45.1MB/s]\n"
|
63 |
]
|
64 |
},
|
65 |
{
|
66 |
"name": "stdout",
|
67 |
"output_type": "stream",
|
68 |
"text": [
|
69 |
+
"Downloading and preparing dataset boolq/default to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5...\n"
|
70 |
]
|
71 |
},
|
72 |
{
|
73 |
"name": "stderr",
|
74 |
"output_type": "stream",
|
75 |
"text": [
|
76 |
+
"Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]\n",
|
77 |
+
"Downloading data: 0%| | 0.00/6.53M [00:00<?, ?B/s]\u001b[A\n",
|
78 |
+
"Downloading data: 0%|β | 17.4k/6.53M [00:00<00:43, 150kB/s]\u001b[A\n",
|
79 |
+
"Downloading data: 1%|ββ | 54.3k/6.53M [00:00<00:26, 246kB/s]\u001b[A\n",
|
80 |
+
"Downloading data: 2%|βββ | 104k/6.53M [00:00<00:18, 346kB/s]\u001b[A\n",
|
81 |
+
"Downloading data: 3%|βββββ | 197k/6.53M [00:00<00:11, 554kB/s]\u001b[A\n",
|
82 |
+
"Downloading data: 5%|ββββββββ | 343k/6.53M [00:00<00:07, 865kB/s]\u001b[A\n",
|
83 |
+
"Downloading data: 10%|ββββββββββββββ | 623k/6.53M [00:00<00:03, 1.50MB/s]\u001b[A\n",
|
84 |
+
"Downloading data: 17%|βββββββββββββββββββββββββ | 1.12M/6.53M [00:00<00:02, 2.58MB/s]\u001b[A\n",
|
85 |
+
"Downloading data: 31%|ββββββββββββββββββββββββββββββββββββββββββββββ | 2.05M/6.53M [00:00<00:00, 4.67MB/s]\u001b[A\n",
|
86 |
+
"Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 6.53M/6.53M [00:01<00:00, 6.28MB/s]\u001b[A\n",
|
87 |
+
"Downloading data files: 50%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 1/2 [00:01<00:01, 1.95s/it]\n",
|
88 |
+
"Downloading data: 0%| | 0.00/2.24M [00:00<?, ?B/s]\u001b[A\n",
|
89 |
+
"Downloading data: 1%|ββ | 17.4k/2.24M [00:00<00:14, 150kB/s]\u001b[A\n",
|
90 |
+
"Downloading data: 2%|ββββ | 54.3k/2.24M [00:00<00:08, 246kB/s]\u001b[A\n",
|
91 |
+
"Downloading data: 5%|βββββββ | 104k/2.24M [00:00<00:06, 347kB/s]\u001b[A\n",
|
92 |
+
"Downloading data: 9%|βββββββββββββ | 195k/2.24M [00:00<00:03, 549kB/s]\u001b[A\n",
|
93 |
+
"Downloading data: 15%|βββββββββββββββββββββββ | 341k/2.24M [00:00<00:02, 863kB/s]\u001b[A\n",
|
94 |
+
"Downloading data: 28%|ββββββββββββββββββββββββββββββββββββββββ | 617k/2.24M [00:00<00:01, 1.49MB/s]\u001b[A\n",
|
95 |
+
"Downloading data: 49%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | 1.09M/2.24M [00:00<00:00, 2.53MB/s]\u001b[A\n",
|
96 |
+
"Downloading data: 100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2.24M/2.24M [00:00<00:00, 2.61MB/s]\u001b[A\n",
|
97 |
+
"Downloading data files: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:03<00:00, 1.85s/it]\n",
|
98 |
" \r"
|
99 |
]
|
100 |
},
|
|
|
102 |
"name": "stdout",
|
103 |
"output_type": "stream",
|
104 |
"text": [
|
105 |
+
"Dataset boolq downloaded and prepared to /home/jue@together.xyz/.cache/huggingface/datasets/boolq/default/0.1.0/bf0dd57da941c50de94ae3ce3cef7fea48c08f337a4b7aac484e9dddc5aa24e5. Subsequent calls will reuse this data.\n"
|
106 |
]
|
107 |
},
|
108 |
{
|
109 |
"name": "stderr",
|
110 |
"output_type": "stream",
|
111 |
"text": [
|
112 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 2/2 [00:00<00:00, 139.08it/s]\n"
|
113 |
+
]
|
114 |
+
}
|
115 |
+
],
|
116 |
+
"source": [
|
117 |
+
"task_name = 'boolq'\n",
|
118 |
+
"data = load_dataset(task_name)\n",
|
119 |
+
"data.shuffle(seed=42)\n",
|
120 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
121 |
+
" for i_item, item in enumerate(data['train']):\n",
|
122 |
+
" text = f\"{item['passage']}\\nQuestion: {item['question']}?\\nAnswer: {item['answer']}\"\n",
|
123 |
+
" f.write(\n",
|
124 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
125 |
+
" )"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": 4,
|
131 |
+
"id": "878216f4-74e4-46ba-bfcd-c95348c10415",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stderr",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Challenge/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n",
|
139 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 624.09it/s]\n"
|
140 |
]
|
141 |
}
|
142 |
],
|
|
|
157 |
},
|
158 |
{
|
159 |
"cell_type": "code",
|
160 |
+
"execution_count": 5,
|
161 |
"id": "7cb51285-d5ce-4ae2-bd7f-ac15e87c4fb7",
|
162 |
"metadata": {},
|
163 |
"outputs": [
|
164 |
{
|
165 |
+
"name": "stderr",
|
166 |
"output_type": "stream",
|
167 |
"text": [
|
168 |
+
"Found cached dataset ai2_arc (/home/jue@together.xyz/.cache/huggingface/datasets/ai2_arc/ARC-Easy/1.0.0/1569c2591ea2683779581d9fb467203d9aa95543bb9b75dcfde5da92529fd7f6)\n",
|
169 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 426.87it/s]\n"
|
170 |
]
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"source": [
|
174 |
+
"task_name = 'arc_easy'\n",
|
175 |
+
"data = load_dataset('ai2_arc', 'ARC-Easy')\n",
|
176 |
+
"data.shuffle(seed=42)\n",
|
177 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
178 |
+
" for i_item, item in enumerate(data['train']):\n",
|
179 |
+
" i_a = item['choices']['label'].index(item['answerKey'])\n",
|
180 |
+
" q = item['question']\n",
|
181 |
+
" a = item['choices']['text'][i_a]\n",
|
182 |
+
" text = \"Question: \" + q + \"\\nAnswer:\" + a\n",
|
183 |
+
" f.write(\n",
|
184 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
185 |
+
" )"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 6,
|
191 |
+
"id": "9347c339-4559-4111-bf44-ce2b624edc9e",
|
192 |
+
"metadata": {},
|
193 |
+
"outputs": [
|
194 |
{
|
195 |
"name": "stderr",
|
196 |
"output_type": "stream",
|
197 |
"text": [
|
198 |
+
"Found cached dataset super_glue (/home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed)\n",
|
199 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 1055.52it/s]\n",
|
200 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-06e156489a3d17ef.arrow\n",
|
201 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-f4bd523109c343ed.arrow\n",
|
202 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/super_glue/copa/1.0.3/bb9675f958ebfee0d5d6dc5476fafe38c79123727a7258d515c450873dbdbbed/cache-b8d0981688b46f46.arrow\n"
|
203 |
]
|
204 |
+
}
|
205 |
+
],
|
206 |
+
"source": [
|
207 |
+
"task_name = 'copa'\n",
|
208 |
+
"data = load_dataset('super_glue', task_name)\n",
|
209 |
+
"data.shuffle(seed=42)\n",
|
210 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
211 |
+
" for i_item, item in enumerate(data['train']):\n",
|
212 |
+
" i_a = item['label']\n",
|
213 |
+
" premise = item['premise']\n",
|
214 |
+
" question = item['question']\n",
|
215 |
+
" choice = item['choice1'] if i_a == 0 else item['choice2']\n",
|
216 |
+
" choice = choice[0].lower() + choice[1:]\n",
|
217 |
+
"\n",
|
218 |
+
" connector = {\n",
|
219 |
+
" \"cause\": \"because\",\n",
|
220 |
+
" \"effect\": \"therefore\",\n",
|
221 |
+
" }[question]\n",
|
222 |
+
"\n",
|
223 |
+
" text = premise.strip()[:-1] + f\" {connector}\" + ' ' + choice\n",
|
224 |
+
" f.write(\n",
|
225 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
226 |
+
" )"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"cell_type": "code",
|
231 |
+
"execution_count": 7,
|
232 |
+
"id": "dc24ba3b-aa6a-4665-87aa-08471a87de9b",
|
233 |
+
"metadata": {},
|
234 |
+
"outputs": [
|
235 |
{
|
236 |
+
"name": "stderr",
|
237 |
"output_type": "stream",
|
238 |
"text": [
|
239 |
+
"Found cached dataset piqa (/home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011)\n",
|
240 |
+
"100%|ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββοΏ½οΏ½οΏ½βββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 910.95it/s]\n",
|
241 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-64434cd628e6e9e0.arrow\n",
|
242 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-97a6e3c466ced62d.arrow\n",
|
243 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/piqa/plain_text/1.1.0/6c611c1a9bf220943c4174e117d3b660859665baf1d43156230116185312d011/cache-6b1e5924150382c7.arrow\n"
|
244 |
]
|
245 |
+
}
|
246 |
+
],
|
247 |
+
"source": [
|
248 |
+
"task_name = 'piqa'\n",
|
249 |
+
"data = load_dataset(task_name)\n",
|
250 |
+
"data.shuffle(seed=42)\n",
|
251 |
+
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
252 |
+
" for i_item, item in enumerate(data['train']):\n",
|
253 |
+
" i_a = item['label']\n",
|
254 |
+
" goal = item['goal']\n",
|
255 |
+
" sol = item['sol1'] if i_a == 0 else item['sol2']\n",
|
256 |
+
"\n",
|
257 |
+
" text = \"Question: \" + goal + \"\\nAnswer: \" + sol\n",
|
258 |
+
" f.write(\n",
|
259 |
+
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
260 |
+
" )"
|
261 |
+
]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"cell_type": "code",
|
265 |
+
"execution_count": 8,
|
266 |
+
"id": "501744bd-0260-4a3c-89dc-df264ff3306e",
|
267 |
+
"metadata": {},
|
268 |
+
"outputs": [
|
269 |
{
|
270 |
"name": "stderr",
|
271 |
"output_type": "stream",
|
272 |
"text": [
|
273 |
+
"Found cached dataset winogrande (/home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2)\n",
|
274 |
+
"100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 3/3 [00:00<00:00, 1014.75it/s]\n",
|
275 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ebcf1ebbadaf243c.arrow\n",
|
276 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-ea79c2b85e9d846f.arrow\n",
|
277 |
+
"Loading cached shuffled indices for dataset at /home/jue@together.xyz/.cache/huggingface/datasets/winogrande/winogrande_xl/1.1.0/a826c3d3506aefe0e9e9390dcb53271070536586bab95849876b2c1743df56e2/cache-5aca6c830a1dfa33.arrow\n"
|
278 |
]
|
279 |
}
|
280 |
],
|
281 |
"source": [
|
282 |
+
"task_name = 'winogrande'\n",
|
283 |
+
"data = load_dataset(task_name, 'winogrande_xl')\n",
|
284 |
"data.shuffle(seed=42)\n",
|
285 |
"with open(f'../{task_name}.jsonl', 'w') as f:\n",
|
286 |
" for i_item, item in enumerate(data['train']):\n",
|
287 |
+
" i_a = item['answer']\n",
|
288 |
+
" sentence = item['sentence']\n",
|
289 |
+
" option = item['option1'] if i_a == 1 else item['option2']\n",
|
290 |
+
" \n",
|
291 |
+
" text = sentence.replace('_', option)\n",
|
292 |
" f.write(\n",
|
293 |
" json.dumps({'text': text, 'source': task_name}) + '\\n'\n",
|
294 |
" )"
|
|
|
296 |
},
|
297 |
{
|
298 |
"cell_type": "code",
|
299 |
+
"execution_count": 9,
|
300 |
+
"id": "65d4b641-2b78-476f-89ac-6ecb48e7d044",
|
301 |
"metadata": {},
|
302 |
"outputs": [
|
303 |
{
|
304 |
+
"name": "stderr",
|
305 |
+
"output_type": "stream",
|
306 |
+
"text": [
|
307 |
+
"Found cached dataset json (/home/jue@together.xyz/.cache/huggingface/datasets/juewang___json/juewang--target-data-72e09ed206c54e99/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96)\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
]
|
309 |
}
|
310 |
],
|
311 |
"source": [
|
312 |
+
"dataset = load_dataset(\"juewang/target-data\", data_files='*.jsonl', split='train')"
|
313 |
]
|
314 |
},
|
315 |
{
|
316 |
"cell_type": "code",
|
317 |
"execution_count": null,
|
318 |
+
"id": "a0554b4f-c5c0-4621-8b91-3daf05e6fbdf",
|
319 |
"metadata": {},
|
320 |
"outputs": [],
|
321 |
"source": []
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
}
|
323 |
],
|
324 |
"metadata": {
|
piqa.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68f23de850360818d0e3733f9fe1540929a9de22e53d25145d831c5932ad520b
|
3 |
+
size 3003394
|
winogrande.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac8f07178644445f6421314b899ff976f49c25804d43cd163734cf139f380681
|
3 |
+
size 5711173
|