|
import json |
|
import textwrap |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
|
|
_CITATION = """\ |
|
@article{tydiqa, |
|
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, |
|
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki} |
|
year = {2020}, |
|
journal = {Transactions of the Association for Computational Linguistics} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. |
|
The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language |
|
expresses -- such that we expect models performing well on this set to generalize across a large number of the languages |
|
in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic |
|
information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but |
|
don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without |
|
the use of translation (unlike MLQA and XQuAD). |
|
|
|
We also include "translate-train" and "translate-test" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The "translate-train" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems. |
|
""" |
|
|
|
_LANG = { |
|
"ar": "arabic", |
|
"bn": "bengali", |
|
"en": "english", |
|
"fi": "finnish", |
|
"id": "indonesian", |
|
"ko": "korean", |
|
"ru": "russian", |
|
"sw": "swahili", |
|
"te": "telugu", |
|
} |
|
|
|
_URL_FORMAT = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{lang}-{split}.jsonl" |
|
_TRANSLATE_TRAIN_URL_FORMAT = "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-{lang}.json" |
|
_TRANSLATE_TEST_URL_FORMAT = "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.{lang}-en.json" |
|
|
|
_VERSION = datasets.Version("1.1.0", "") |
|
|
|
|
|
class TyDiQAConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TydiQa.""" |
|
|
|
def __init__(self, lang, **kwargs): |
|
""" |
|
|
|
Args: |
|
lang: string, language for the input text |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TyDiQAConfig, self).__init__(version=_VERSION, **kwargs) |
|
self.lang = lang |
|
|
|
class TyDiQA(datasets.GeneratorBasedBuilder): |
|
"""TyDi QA: Information-Seeking QA in Typologically Diverse Languages.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TyDiQAConfig( |
|
name=lang, |
|
lang=lang, |
|
description=f"TyDiQA '{lang}' train and test splits, with machine-translated " |
|
"translate-train/translate-test splits " |
|
"from XTREME (Hu et al., 2020).", |
|
) for lang in _LANG if lang != "en" |
|
] + [ |
|
TyDiQAConfig( |
|
name="en", |
|
lang="en", |
|
description="TyDiQA 'en' train and test splits.", |
|
) |
|
] |
|
|
|
|
|
def _info(self): |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://github.com/google-research-datasets/tydiqa", |
|
citation=_CITATION, |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
lang = self.config.lang |
|
|
|
if lang == "en": |
|
filepaths = dl_manager.download_and_extract({ |
|
"train": _URL_FORMAT.format(split="train", lang=_LANG[lang]), |
|
"test": _URL_FORMAT.format(split="dev", lang=_LANG[lang]) |
|
}) |
|
elif lang == "ko": |
|
filepaths = dl_manager.download_and_extract({ |
|
"test": _URL_FORMAT.format(split="dev", lang=_LANG[lang]), |
|
"translate_train": _TRANSLATE_TRAIN_URL_FORMAT.format(lang=lang), |
|
"translate_test": _TRANSLATE_TEST_URL_FORMAT.format(lang=lang), |
|
}) |
|
else: |
|
filepaths = dl_manager.download_and_extract({ |
|
"train": _URL_FORMAT.format(split="train", lang=_LANG[lang]), |
|
"test": _URL_FORMAT.format(split="dev", lang=_LANG[lang]), |
|
"translate_train": _TRANSLATE_TRAIN_URL_FORMAT.format(lang=lang), |
|
"translate_test": _TRANSLATE_TEST_URL_FORMAT.format(lang=lang), |
|
}) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
|
|
gen_kwargs={"filepath": path}, |
|
) for split, path in filepaths.items() |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
num_lines = sum(1 for line in f) |
|
with open(filepath, encoding="utf-8") as f: |
|
if num_lines == 1: |
|
data = json.load(f) |
|
id_ = 0 |
|
for article in data["data"]: |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
|
|
yield id_, { |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
id_ += 1 |
|
else: |
|
id_ = 0 |
|
for line in f: |
|
data = json.loads(line) |
|
|
|
context = data["passage_text"].strip() |
|
question = data["question_text"].strip() |
|
answer_starts = [answer["start_byte"] for answer in data["answers"]] |
|
answers = [answer["text"].strip() for answer in data["answers"]] |
|
|
|
yield id_, { |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
id_ += 1 |
|
|