kor_nli / kor_nli.py
albertvillanova's picture
Support streaming (#3)
2b6370b
raw
history blame
4.58 kB
"""TODO(kor_nli): Add a description here."""
import os
import datasets
# TODO(kor_nli): BibTeX citation
_CITATION = """\
@article{ham2020kornli,
title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding},
author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon},
journal={arXiv preprint arXiv:2004.03289},
year={2020}
}
"""
# TODO(kor_nli):
_DESCRIPTION = """ Korean Natural Language Inference datasets
"""
_URL = "data.zip"
class KorNLIConfig(datasets.BuilderConfig):
"""BuilderConfig for KorNLI."""
def __init__(self, **kwargs):
"""BuilderConfig for KorNLI.
Args:
**kwargs: keyword arguments forwarded to super.
"""
# Version 1.1.0 remove empty document and summary strings.
super(KorNLIConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
class KorNli(datasets.GeneratorBasedBuilder):
"""TODO(kor_nli): Short description of my dataset."""
# TODO(kor_nli): Set up version.
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
KorNLIConfig(name="multi_nli", description="Korean multi NLI datasets"),
KorNLIConfig(name="snli", description="Korean SNLI dataset"),
KorNLIConfig(name="xnli", description="Korean XNLI dataset"),
]
def _info(self):
# TODO(kor_nli): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
# These are the features of your dataset like images, labels ...
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/kakaobrain/KorNLUDatasets",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(kor_nli): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
dl_dir = os.path.join(dl_dir, "KorNLI")
if self.config.name == "multi_nli":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "multinli.train.ko.tsv")},
),
]
elif self.config.name == "snli":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "snli_1.0_train.ko.tsv")},
),
]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "xnli.dev.ko.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "xnli.test.ko.tsv")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(kor_nli): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
next(f) # skip headers
columns = ("premise", "hypothesis", "label")
for id_, row in enumerate(f):
row = row.strip().split("\t")
if len(row) != 3:
continue
row = dict(zip(columns, row))
yield id_, row