"""TODO(kor_nli): Add a description here.""" from __future__ import absolute_import, division, print_function import csv import os import datasets # TODO(kor_nli): BibTeX citation _CITATION = """\ @article{ham2020kornli, title={KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding}, author={Ham, Jiyeon and Choe, Yo Joong and Park, Kyubyong and Choi, Ilji and Soh, Hyungjoon}, journal={arXiv preprint arXiv:2004.03289}, year={2020} } """ # TODO(kor_nli): _DESCRIPTION = """ Korean Natural Language Inference datasets """ _URL = "https://github.com/kakaobrain/KorNLUDatasets/archive/master.zip" class KorNLIConfig(datasets.BuilderConfig): """BuilderConfig for KorNLI.""" def __init__(self, **kwargs): """BuilderConfig for KorNLI. Args: **kwargs: keyword arguments forwarded to super. """ # Version 1.1.0 remove empty document and summary strings. super(KorNLIConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) class KorNli(datasets.GeneratorBasedBuilder): """TODO(kor_nli): Short description of my dataset.""" # TODO(kor_nli): Set up version. VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ KorNLIConfig(name="multi_nli", description="Korean multi NLI datasets"), KorNLIConfig(name="snli", description="Korean SNLI dataset"), KorNLIConfig(name="xnli", description="Korean XNLI dataset"), ] def _info(self): # TODO(kor_nli): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { # These are the features of your dataset like images, labels ... "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "gold_label": datasets.Value("string"), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/kakaobrain/KorNLUDatasets", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(kor_nli): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs dl_dir = dl_manager.download_and_extract(_URL) dl_dir = os.path.join(dl_dir, "KorNLUDatasets-master", "KorNLI") if self.config.name == "multi_nli": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir, "multinli.train.ko.tsv")}, ), ] elif self.config.name == "snli": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir, "snli_1.0_train.ko.tsv")}, ), ] else: return [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir, "xnli.dev.ko.tsv")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir, "xnli.test.ko.tsv")}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(kor_nli): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: data = csv.DictReader(f, dialect="excel-tab") for id_, row in enumerate(data): if len(row) != 3: continue yield id_, row