tiny_shakespeare / dataset_infos.json
albertvillanova's picture
Convert dataset to Parquet
6fa1fd1
raw
history blame
2.1 kB
{
"default": {
"description": "40,000 lines of Shakespeare from a variety of Shakespeare's plays. Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/.\n\nTo use for e.g. character modelling:\n\n```\nd = datasets.load_dataset(name='tiny_shakespeare')['train']\nd = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))\n# train split includes vocabulary for other splits\nvocabulary = sorted(set(next(iter(d)).numpy()))\nd = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})\nd = d.unbatch()\nseq_len = 100\nbatch_size = 2\nd = d.batch(seq_len)\nd = d.batch(batch_size)\n```\n",
"citation": "@misc{\n author={Karpathy, Andrej},\n title={char-rnn},\n year={2015},\n howpublished={\\url{https://github.com/karpathy/char-rnn}}\n}",
"homepage": "https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt",
"license": "",
"features": {
"text": {
"dtype": "string",
"_type": "Value"
}
},
"builder_name": "tiny_shakespeare",
"dataset_name": "tiny_shakespeare",
"config_name": "default",
"version": {
"version_str": "1.0.0",
"major": 1,
"minor": 0,
"patch": 0
},
"splits": {
"train": {
"name": "train",
"num_bytes": 1003858,
"num_examples": 1,
"dataset_name": null
},
"validation": {
"name": "validation",
"num_bytes": 55774,
"num_examples": 1,
"dataset_name": null
},
"test": {
"name": "test",
"num_bytes": 55774,
"num_examples": 1,
"dataset_name": null
}
},
"download_size": 706067,
"dataset_size": 1115406,
"size_in_bytes": 1821473
}
}