albertvillanova HF staff commited on
Commit
54795dd
1 Parent(s): 6fa1fd1

Delete loading script

Browse files
Files changed (1) hide show
  1. tiny_shakespeare.py +0 -110
tiny_shakespeare.py DELETED
@@ -1,110 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Tiny Shakespeare dataset."""
18
-
19
-
20
- import os
21
-
22
- import datasets
23
-
24
-
25
- _CITATION = """\
26
- @misc{
27
- author={Karpathy, Andrej},
28
- title={char-rnn},
29
- year={2015},
30
- howpublished={\\url{https://github.com/karpathy/char-rnn}}
31
- }"""
32
-
33
- _DESCRIPTION = """\
34
- 40,000 lines of Shakespeare from a variety of Shakespeare's plays. \
35
- Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of \
36
- Recurrent Neural Networks': \
37
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
38
-
39
- To use for e.g. character modelling:
40
-
41
- ```
42
- d = datasets.load_dataset(name='tiny_shakespeare')['train']
43
- d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))
44
- # train split includes vocabulary for other splits
45
- vocabulary = sorted(set(next(iter(d)).numpy()))
46
- d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
47
- d = d.unbatch()
48
- seq_len = 100
49
- batch_size = 2
50
- d = d.batch(seq_len)
51
- d = d.batch(batch_size)
52
- ```
53
- """
54
-
55
-
56
- class TinyShakespeare(datasets.GeneratorBasedBuilder):
57
- """Tiny Shakespeare dataset builder."""
58
-
59
- VERSION = datasets.Version("1.0.0")
60
-
61
- def _info(self):
62
- return datasets.DatasetInfo(
63
- description=_DESCRIPTION,
64
- features=datasets.Features({"text": datasets.Value("string")}),
65
- supervised_keys=None,
66
- homepage="https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt",
67
- citation=_CITATION,
68
- )
69
-
70
- def _split_generators(self, dl_manager):
71
- """Returns SplitGenerators."""
72
- download_path = dl_manager.download_and_extract(
73
- "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
74
- )
75
- if os.path.isdir(download_path):
76
- # During testing the download manager mock gives us a directory
77
- txt_path = os.path.join(download_path, "input.txt")
78
- else:
79
- txt_path = download_path
80
- with open(txt_path, "r", encoding="utf-8") as f:
81
- text = f.read()
82
-
83
- # 90/5/5 split
84
- i = int(len(text) * 0.9)
85
- train_text, text = text[:i], text[i:]
86
- i = int(len(text) * 0.5)
87
- validation_text, text = text[:i], text[i:]
88
- test_text = text
89
-
90
- return [
91
- datasets.SplitGenerator(
92
- name=datasets.Split.TRAIN,
93
- # These kwargs will be passed to _generate_examples
94
- gen_kwargs={"split_key": "train", "split_text": train_text},
95
- ),
96
- datasets.SplitGenerator(
97
- name=datasets.Split.VALIDATION,
98
- gen_kwargs={"split_key": "validation", "split_text": validation_text},
99
- ),
100
- datasets.SplitGenerator(
101
- name=datasets.Split.TEST,
102
- gen_kwargs={"split_key": "test", "split_text": test_text},
103
- ),
104
- ]
105
-
106
- def _generate_examples(self, split_key, split_text):
107
- """Yields examples."""
108
- data_key = split_key # Should uniquely identify the thing yielded
109
- feature_dict = {"text": split_text}
110
- yield data_key, feature_dict