pokemon-classification / pokemon-classification.py
keremberke's picture
dataset uploaded by roboflow2huggingface package
a0b014f
import os
import datasets
from datasets.tasks import ImageClassification
_HOMEPAGE = "https://universe.roboflow.com/robert-demo-qvail/pokedex/dataset/14"
_LICENSE = "Public Domain"
_CITATION = """\
@misc{ pokedex_dataset,
title = { Pokedex Dataset },
type = { Open Source Dataset },
author = { Lance Zhang },
howpublished = { \\url{ https://universe.roboflow.com/robert-demo-qvail/pokedex } },
url = { https://universe.roboflow.com/robert-demo-qvail/pokedex },
journal = { Roboflow Universe },
publisher = { Roboflow },
year = { 2022 },
month = { dec },
note = { visited on 2023-01-14 },
}
"""
_CATEGORIES = ['Porygon', 'Goldeen', 'Hitmonlee', 'Hitmonchan', 'Gloom', 'Aerodactyl', 'Mankey', 'Seadra', 'Gengar', 'Venonat', 'Articuno', 'Seaking', 'Dugtrio', 'Machop', 'Jynx', 'Oddish', 'Dodrio', 'Dragonair', 'Weedle', 'Golduck', 'Flareon', 'Krabby', 'Parasect', 'Ninetales', 'Nidoqueen', 'Kabutops', 'Drowzee', 'Caterpie', 'Jigglypuff', 'Machamp', 'Clefairy', 'Kangaskhan', 'Dragonite', 'Weepinbell', 'Fearow', 'Bellsprout', 'Grimer', 'Nidorina', 'Staryu', 'Horsea', 'Electabuzz', 'Dratini', 'Machoke', 'Magnemite', 'Squirtle', 'Gyarados', 'Pidgeot', 'Bulbasaur', 'Nidoking', 'Golem', 'Dewgong', 'Moltres', 'Zapdos', 'Poliwrath', 'Vulpix', 'Beedrill', 'Charmander', 'Abra', 'Zubat', 'Golbat', 'Wigglytuff', 'Charizard', 'Slowpoke', 'Poliwag', 'Tentacruel', 'Rhyhorn', 'Onix', 'Butterfree', 'Exeggcute', 'Sandslash', 'Pinsir', 'Rattata', 'Growlithe', 'Haunter', 'Pidgey', 'Ditto', 'Farfetchd', 'Pikachu', 'Raticate', 'Wartortle', 'Vaporeon', 'Cloyster', 'Hypno', 'Arbok', 'Metapod', 'Tangela', 'Kingler', 'Exeggutor', 'Kadabra', 'Seel', 'Voltorb', 'Chansey', 'Venomoth', 'Ponyta', 'Vileplume', 'Koffing', 'Blastoise', 'Tentacool', 'Lickitung', 'Paras', 'Clefable', 'Cubone', 'Marowak', 'Nidorino', 'Jolteon', 'Muk', 'Magikarp', 'Slowbro', 'Tauros', 'Kabuto', 'Spearow', 'Sandshrew', 'Eevee', 'Kakuna', 'Omastar', 'Ekans', 'Geodude', 'Magmar', 'Snorlax', 'Meowth', 'Pidgeotto', 'Venusaur', 'Persian', 'Rhydon', 'Starmie', 'Charmeleon', 'Lapras', 'Alakazam', 'Graveler', 'Psyduck', 'Rapidash', 'Doduo', 'Magneton', 'Arcanine', 'Electrode', 'Omanyte', 'Poliwhirl', 'Mew', 'Alolan Sandslash', 'Mewtwo', 'Weezing', 'Gastly', 'Victreebel', 'Ivysaur', 'MrMime', 'Shellder', 'Scyther', 'Diglett', 'Primeape', 'Raichu']
class POKEMONCLASSIFICATIONConfig(datasets.BuilderConfig):
"""Builder Config for pokemon-classification"""
def __init__(self, data_urls, **kwargs):
"""
BuilderConfig for pokemon-classification.
Args:
data_urls: `dict`, name to url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(POKEMONCLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.data_urls = data_urls
class POKEMONCLASSIFICATION(datasets.GeneratorBasedBuilder):
"""pokemon-classification image classification dataset"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
POKEMONCLASSIFICATIONConfig(
name="full",
description="Full version of pokemon-classification dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/train.zip",
"validation": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/valid.zip",
"test": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/test.zip",
}
,
),
POKEMONCLASSIFICATIONConfig(
name="mini",
description="Mini version of pokemon-classification dataset.",
data_urls={
"train": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip",
"validation": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip",
"test": "https://huggingface.co/datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip",
},
)
]
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"image_file_path": datasets.Value("string"),
"image": datasets.Image(),
"labels": datasets.features.ClassLabel(names=_CATEGORIES),
}
),
supervised_keys=("image", "labels"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=[ImageClassification(image_column="image", label_column="labels")],
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(self.config.data_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files": dl_manager.iter_files([data_files["train"]]),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files": dl_manager.iter_files([data_files["validation"]]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files": dl_manager.iter_files([data_files["test"]]),
},
),
]
def _generate_examples(self, files):
for i, path in enumerate(files):
file_name = os.path.basename(path)
if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")):
yield i, {
"image_file_path": path,
"image": path,
"labels": os.path.basename(os.path.dirname(path)),
}