File size: 15,467 Bytes
f3983dd 1009812 f3983dd f739aba f3983dd f739aba f3983dd f739aba f3983dd f739aba f3983dd f739aba 1009812 f739aba f3983dd f739aba f3983dd f739aba f3983dd f739aba f3983dd f739aba f3983dd f739aba 1009812 f739aba 2c18f17 f3983dd f739aba 1009812 f3983dd 2c18f17 f3983dd 5d53ed5 f3983dd 4f646fd f739aba 4f646fd f3983dd f739aba f3983dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import csv
import json
import os
import os.path as op
import base64
import zipfile
from getpass import getpass
from tqdm import tqdm
import platform
import subprocess
from urllib.parse import urlparse
import datasets
from datasets.filesystems import S3FileSystem
import boto3
from botocore import UNSIGNED
from botocore.client import Config
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{mehrer2021ecologically,
title={An ecologically motivated image dataset for deep learning yields better models of human vision},
author={Mehrer, Johannes and Spoerer, Courtney J and Jones, Emer C and Kriegeskorte, Nikolaus and Kietzmann, Tim C},
journal={Proceedings of the National Academy of Sciences},
volume={118},
number={8},
year={2021},
publisher={National Acad Sciences}
}
"""
# You can copy an official description
_DESCRIPTION = """\
Tired of all the dogs in ImageNet (ILSVRC)? Then ecoset is here for you. 1.5m images
from 565 basic level categories, chosen to be both (i) frequent in linguistic usage,
and (ii) rated by human observers as concrete (e.g. ‘table’ is concrete, ‘romance’
is not). Here we collect resources associated with ecoset. This includes the dataset,
trained deep neural network models, code to interact with them, and published papers
using it.
"""
# official homepage for the dataset here
_HOMEPAGE = "https://www.kietzmannlab.org/ecoset/"
# licence for the dataset here
_LICENSE = "CC BY NC SA 2.0"
# dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
#"codeocean": "https://files.codeocean.com/datasets/verified/0ab003f4-ff2d-4de3-b4f8-b6e349c0e5e5/ecoset.zip?download", # codeocean cancels after 50GB
"codeocean": "s3://codeocean-datasets/0ab003f4-ff2d-4de3-b4f8-b6e349c0e5e5/ecoset.zip",
}
labels = ['cymbals', 'bison', 'lemonade', 'crib', 'chestnut', 'mosquito', 'aloe', 'extinguisher', 'onion', 'starfish', 'basket', 'jar', 'snail', 'mushroom', 'coffin', 'joystick', 'raspberry', 'gearshift', 'tyrannosaurus', 'stadium', 'telescope', 'blueberry', 'hippo', 'cannabis', 'hairbrush', 'river', 'artichoke', 'wallet', 'city', 'bee', 'rifle', 'boar', 'bib', 'envelope', 'silverfish', 'shower', 'curtain', 'pinwheel', 'guillotine', 'snowplow', 'hut', 'jukebox', 'gecko', 'marshmallow', 'lobster', 'flashlight', 'breadfruit', 'cow', 'spoon', 'blender', 'croissant', 'greenhouse', 'church', 'antenna', 'monkey', 'zucchini', 'snake', 'manatee', 'child', 'table', 'winterberry', 'sloth', 'cannon', 'baguette', 'persimmon', 'candelabra', 'necklace', 'flag', 'geyser', 'thermos', 'tweezers', 'chandelier', 'kebab', 'mailbox', 'steamroller', 'crayon', 'lawnmower', 'pomegranate', 'fire', 'violin', 'matchstick', 'train', 'hamster', 'bobsleigh', 'boat', 'bullet', 'forklift', 'clock', 'saltshaker', 'anteater', 'crowbar', 'lightbulb', 'pier', 'muffin', 'paintbrush', 'crawfish', 'bench', 'nectarine', 'eyedropper', 'backpack', 'goat', 'hotplate', 'fishnet', 'robot', 'rice', 'shovel', 'candle', 'blimp', 'bridge', 'mountain', 'coleslaw', 'stagecoach', 'waterfall', 'ladle', 'radiator', 'drain', 'tray', 'house', 'key', 'skunk', 'lake', 'earpiece', 'gazebo', 'blackberry', 'groundhog', 'paperclip', 'cookie', 'milk', 'rug', 'thermostat', 'milkshake', 'scoreboard', 'bean', 'giraffe', 'antelope', 'newsstand', 'camcorder', 'sawmill', 'balloon', 'ladder', 'videotape', 'microphone', 'coin', 'hay', 'moth', 'octopus', 'honeycomb', 'wrench', 'cane', 'bobcat', 'banner', 'newspaper', 'reef', 'worm', 'cucumber', 'beach', 'couch', 'streetlamp', 'rhino', 'ceiling', 'cupcake', 'hourglass', 'caterpillar', 'tamale', 'asparagus', 'flower', 'frog', 'dog', 'knife', 'lamp', 'walnut', 'grape', 'scone', 'peanut', 'ferret', 'kettle', 'elephant', 'oscilloscope', 'weasel', 'guava', 'gramophone', 'stove', 'bamboo', 'chicken', 'guacamole', 'toolbox', 'tractor', 'tiger', 'butterfly', 'coffeepot', 'bus', 'meteorite', 'fish', 'graveyard', 'blowtorch', 'grapefruit', 'cat', 'jellyfish', 'carousel', 'wheat', 'tadpole', 'kazoo', 'raccoon', 'typewriter', 'scissors', 'pothole', 'earring', 'drawers', 'cup', 'warthog', 'wall', 'lighthouse', 'burrito', 'cassette', 'nacho', 'sink', 'seashell', 'bed', 'noodles', 'woman', 'rabbit', 'fence', 'pistachio', 'pencil', 'hotdog', 'ball', 'ship', 'strawberry', 'pan', 'custard', 'dolphin', 'tent', 'bun', 'tortilla', 'tumbleweed', 'playground', 'scallion', 'anchor', 'hare', 'waterspout', 'dough', 'burner', 'kale', 'razor', 'chocolate', 'doughnut', 'squeegee', 'bandage', 'beaver', 'refrigerator', 'cork', 'anvil', 'microchip', 'banana', 'thumbtack', 'chair', 'sharpener', 'bird', 'castle', 'wand', 'doormat', 'celery', 'steak', 'ant', 'apple', 'cave', 'scaffolding', 'bell', 'towel', 'mantis', 'thimble', 'bowl', 'chess', 'pickle', 'lollypop', 'leek', 'barrel', 'dollhouse', 'tapioca', 'spareribs', 'fig', 'apricot', 'strongbox', 'brownie', 'beaker', 'manhole', 'piano', 'whale', 'hammer', 'dishrag', 'pecan', 'highlighter', 'pretzel', 'earwig', 'cogwheel', 'trashcan', 'syringe', 'turnip', 'pear', 'lettuce', 'hedgehog', 'guardrail', 'bubble', 'pineapple', 'burlap', 'moon', 'spider', 'fern', 'binoculars', 'gravel', 'plum', 'scorpion', 'cube', 'squirrel', 'book', 'crouton', 'bag', 'lantern', 'parsley', 'jaguar', 'thyme', 'oyster', 'kumquat', 'chinchilla', 'cherry', 'umbrella', 'bicycle', 'eggbeater', 'pig', 'kitchen', 'fondue', 'treadmill', 'casket', 'papaya', 'beetle', 'shredder', 'grasshopper', 'anthill', 'chili', 'bottle', 'calculator', 'gondola', 'pizza', 'compass', 'mop', 'hamburger', 'chipmunk', 'bagel', 'outhouse', 'pliers', 'wolf', 'matchbook', 'corn', 'salamander', 'lasagna', 'stethoscope', 'eggroll', 'avocado', 'eggplant', 'mouse', 'walrus', 'sprinkler', 'glass', 'cauldron', 'parsnip', 'canoe', 'pancake', 'koala', 'deer', 'chalk', 'urinal', 'toilet', 'cabbage', 'platypus', 'lizard', 'leopard', 'cake', 'hammock', 'defibrillator', 'sundial', 'beet', 'popcorn', 'spinach', 'cauliflower', 'canyon', 'spacecraft', 'teapot', 'tunnel', 'porcupine', 'jail', 'spearmint', 'dustpan', 'calipers', 'toast', 'drum', 'phone', 'wire', 'alligator', 'vase', 'motorcycle', 'toothpick', 'coconut', 'lion', 'turtle', 'cheetah', 'bugle', 'casino', 'fountain', 'pie', 'bread', 'meatball', 'windmill', 'gun', 'projector', 'chameleon', 'tomato', 'nutmeg', 'plate', 'bulldozer', 'camel', 'sphinx', 'mall', 'hanger', 'ukulele', 'wheelbarrow', 'ring', 'dildo', 'loudspeaker', 'odometer', 'ruler', 'mousetrap', 'breadbox', 'parachute', 'bolt', 'bracelet', 'library', 'otter', 'airplane', 'pea', 'tongs', 'cactus', 'knot', 'shrimp', 'computer', 'sheep', 'television', 'melon', 'kangaroo', 'helicopter', 'birdcage', 'pumpkin', 'dishwasher', 'crocodile', 'stairs', 'garlic', 'barnacle', 'crate', 'lime', 'axe', 'hairpin', 'egg', 'emerald', 'candy', 'stegosaurus', 'broom', 'mistletoe', 'submarine', 'fireworks', 'peach', 'ape', 'chalkboard', 'bumblebee', 'potato', 'battery', 'guitar', 'opossum', 'volcano', 'llama', 'ashtray', 'sieve', 'coliseum', 'cinnamon', 'moose', 'tree', 'donkey', 'wasp', 'corkscrew', 'gargoyle', 'taco', 'macadamia', 'camera', 'mandolin', 'kite', 'cranberry', 'thermometer', 'tofu', 'closet', 'hovercraft', 'escalator', 'horseshoe', 'wristwatch', 'lemon', 'sushi', 'rat', 'rainbow', 'pillow', 'radish', 'granola', 'okra', 'pastry', 'mango', 'dragonfly', 'flashbulb', 'chalice', 'acorn', 'birdhouse', 'gooseberry', 'locker', 'padlock', 'missile', 'clarinet', 'panda', 'iceberg', 'road', 'flea', 'hazelnut', 'cockroach', 'needle', 'omelet', 'desert', 'condom', 'graffiti', 'iguana', 'bucket', 'photocopier', 'blanket', 'microscope', 'horse', 'nest', 'screwdriver', 'toaster', 'car', 'doll', 'salsa', 'man', 'zebra', 'stapler', 'grate', 'truck', 'bear', 'carrot', 'auditorium', 'cashew', 'shield', 'crown', 'altar', 'pudding', 'cheese', 'rhubarb', 'broccoli', 'tower', 'cumin', 'elevator', 'wheelchair', 'flyswatter']
_PWD_MSG = "\nIn order to use ecoset, please read the README and License agreement found under:\nhttps://codeocean.com/capsule/9570390\nand enter the mentioned password.\n\nPlease Enter Password:\n"
def check_pass(pw):
if base64.b64encode(pw.encode("ascii")) != (b"ZWNvc2V0X21zamtr"):
raise AttributeError("Wrong password! Please try again.")
else:
print("Password correct.\n")
# Name of the dataset usually match the script name with CamelCase instead of snake_case
class Ecoset(datasets.GeneratorBasedBuilder):
"""Ecoset is a large clean and ecologically valid image dataset."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="Full", version=VERSION, description="We could do different splits of the dataset here. But we don't"),
]
DEFAULT_CONFIG_NAME = "Full" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# define dataset features
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=labels),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
# creating a template
task_templates=[datasets.tasks.ImageClassification(image_column="image", label_column="label")],
)
def _split_generators(self, dl_manager):
# Ask password of user. This could be also handled through dataset config
def abslist(path):
"""Helper function to give abspaths of os.listdir"""
return [op.join(path, p) for p in os.listdir(path)]
def s3_zipfile_download(source_url, target_dir):
"""Extremely slow download"""
# ask password
password = getpass(_PWD_MSG)
check_pass(password)
# download and unzip
print('Using slow Python-based download and unzipping. This can take up to 70h on a typical computer. Sorry.')
s3 = S3FileSystem(anon=True, use_ssl=False, default_block_size=int(15 * 2**20))
with s3.open(source_url, "rb") as raw_filw:
with ZipFile(raw_filw, compression=zipfile.ZIP_DEFLATED, allowZip64=True) as zip_file:
member_list = zip_file.namelist()
for member in tqdm(member_list, total=len(member_list), desc="Extracting ecoset to disc"):
zip_file.extract(member, target_dir, pwd=password.encode("ascii"))
def subprocess_download(source_url, target_dir):
"""Moderately slow download"""
# ask password
password = getpass(_PWD_MSG)
check_pass(password)
# download
print('Using "fast" native OS unzipping. This will take about 15h on a typical Linux/Mac and 8h on a typical Windows Computer.')
urlinfo = urlparse(source_url, allow_fragments=False)
if not op.exists(target_dir):
os.makedirs(target_dir)
zip_path = op.join(target_dir, "ecoset.zip")
if not op.exists(zip_path):
s3 = boto3.client(urlinfo.scheme, config=Config(signature_version=UNSIGNED))
s3.download_file(urlinfo.netloc, urlinfo.path[1:], zip_path)
# unzip
# Expand-Archive -LiteralPath <PathToZipFile> -DestinationPath <PathToDestination>
if platform.system() in ("Linux", "Darwin"):
subprocess.call(["unzip", "-n", "-P", password.encode("ascii"), "-o", zip_path, "-d", target_dir], shell=False)
else:
subprocess.call(["tar.exe", "-xf", zip_path, "-C", target_dir, "--passphrase", password], shell=False)
# tar.exe -xf ecoset_uncompressed.zip -C uncompressed --passphrase ecoset_msjkk
# take slow or very slow download depending on platform
archives = dl_manager.download_custom(_URLS["codeocean"], subprocess_download)
# take slow or very slow download depending on platform
#if platform.system() in ("Linux", "Darwin"):
# archives = dl_manager.download_custom(_URLS["codeocean"], subprocess_download)
#else:
# archives = dl_manager.download_custom(_URLS["codeocean"], s3_zipfile_download)
#archives = dl_manager.download(_URLS["codeocean"])
print("Ecoset files are stored under: \n", archives)
# create a dict containing all files
split_dict = {split:[] for split in ("train", "val", "test")}
for split in split_dict.keys():
fnames = abslist(op.join(archives, split))
for f in fnames:
split_dict[split].extend(abslist(f))
# return data splits
return [datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archives": split_dict["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"archives": split_dict["val"],
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"archives": split_dict["test"],
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, archives, split):
"""Yields examples."""
idx = 0
for archive in archives:
if any(archive.endswith(i) for i in (".JPEG", ".JPG", ".jpeg", ".jpg")):
# extract file, label, etc
file = open(archive, 'rb')
synset_id, label = archive.split("/")[-2].split("_")
ex = {"image": {"path": archive, "bytes": file.read()}, "label": label}
yield idx, ex
idx += 1 |