|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = "Custom dataset for extracting audio files and matching sentences." |
|
|
|
_DATA_URL = "https://huggingface.co/datasets/ugshanyu/jambal2/resolve/main" |
|
|
|
class CustomDataset(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=48_000), |
|
"sentence": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=("audio", "sentence"), |
|
homepage=None, |
|
citation=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
audio_path = dl_manager.download_and_extract(_DATA_URL+"/test.zip") |
|
csv_path = dl_manager.download_and_extract(_DATA_URL+"/col.csv") |
|
|
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"audio_path": audio_path, "csv_path": csv_path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, audio_path, csv_path): |
|
print(audio_path) |
|
print(csv_path) |
|
key = 0 |
|
print(os.listdir(audio_path)) |
|
|
|
with open(csv_path, encoding="utf-8") as csv_file: |
|
csv_reader = csv.DictReader(csv_file) |
|
for row in csv_reader: |
|
original_sentence_id, sentence = row.values() |
|
audio_file = f"{original_sentence_id}.mp3" |
|
audio_file_path = os.path.join(audio_path, audio_file) |
|
yield key, { |
|
"audio": audio_file_path, |
|
"sentence": sentence, |
|
} |
|
key += 1 |
|
|
|
|