File size: 8,399 Bytes
66cdf1b d3f8a70 66cdf1b d3f8a70 66cdf1b c4d36de 66cdf1b 41b7e87 844a873 2436a60 844a873 41b7e87 203df07 ffdea4e 66cdf1b 8fba7d6 66cdf1b 8fba7d6 66cdf1b 3e56355 66cdf1b 2436a60 66cdf1b 3e56355 66cdf1b 2436a60 66cdf1b 2436a60 3e56355 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10M<n<100M
- 1M<n<10M
source_datasets:
- original
task_categories: []
task_ids: []
pretty_name: Ollie
tags:
- relation-extraction
- text-to-structured
dataset_info:
- config_name: ollie_lemmagrep
features:
- name: arg1
dtype: string
- name: arg2
dtype: string
- name: rel
dtype: string
- name: search_query
dtype: string
- name: sentence
dtype: string
- name: words
dtype: string
- name: pos
dtype: string
- name: chunk
dtype: string
- name: sentence_cnt
dtype: string
splits:
- name: train
num_bytes: 12324648919
num_examples: 18674630
download_size: 1789363108
dataset_size: 12324648919
- config_name: ollie_patterned
features:
- name: rel
dtype: string
- name: arg1
dtype: string
- name: arg2
dtype: string
- name: slot0
dtype: string
- name: search_query
dtype: string
- name: pattern
dtype: string
- name: sentence
dtype: string
- name: parse
dtype: string
splits:
- name: train
num_bytes: 2930309084
num_examples: 3048961
download_size: 387514061
dataset_size: 2930309084
config_names:
- ollie_lemmagrep
- ollie_patterned
---
# Dataset Card for Ollie
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Ollie](https://knowitall.github.io/ollie/)
- **Repository:** [Github](https://github.com/knowitall/ollie)
- **Paper:** [Aclweb](https://www.aclweb.org/anthology/D12-1048/)
### Dataset Summary
The Ollie dataset includes two configs for the data
used to train the Ollie informatation extraction algorithm, for 18M
sentences and 3M sentences respectively.
This data is for academic use only. From the authors:
Ollie is a program that automatically identifies and extracts binary
relationships from English sentences. Ollie is designed for Web-scale
information extraction, where target relations are not specified in
advance.
Ollie is our second-generation information extraction system . Whereas
ReVerb operates on flat sequences of tokens, Ollie works with the
tree-like (graph with only small cycles) representation using
Stanford's compression of the dependencies. This allows Ollie to
capture expression that ReVerb misses, such as long-range relations.
Ollie also captures context that modifies a binary relation. Presently
Ollie handles attribution (He said/she believes) and enabling
conditions (if X then).
More information is available at the Ollie homepage:
https://knowitall.github.io/ollie/
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
en
## Dataset Structure
### Data Instances
There are two configurations for the dataset: ollie_lemmagrep which
are 18M sentences from web searches for a subset of the Reverb
relationships (110,000 relationships), and the 3M sentences for
ollie_patterned which is a subset of the ollie_lemmagrep dataset
derived from patterns according to the Ollie paper.
An example of an ollie_lemmagrep record:
``
{'arg1': 'adobe reader',
'arg2': 'pdf',
'chunk': 'B-NP I-NP I-NP I-NP B-PP B-NP I-NP B-VP B-PP B-NP I-NP O B-VP B-NP I-NP I-NP I-NP B-VP I-VP I-VP O',
'pos': 'JJ NNS CC NNS IN PRP$ NN VBP IN NNP NN CC VB DT NNP NNP NNP TO VB VBN .',
'rel': 'be require to view',
'search_query': 'require reader pdf adobe view',
'sentence': 'Many documents and reports on our site are in PDF format and require the Adobe Acrobat Reader to be viewed .',
'sentence_cnt': '9',
'words': 'many,document,and,report,on,our,site,be,in,pdf,format,and,require,the,adobe,acrobat,reader,to,be,view'}
``
An example of an ollie_patterned record:
``
{'arg1': 'english',
'arg2': 'internet',
'parse': '(in_IN_6), advmod(important_JJ_4, most_RBS_3); nsubj(language_NN_5, English_NNP_0); cop(language_NN_5, being_VBG_1); det(language_NN_5, the_DT_2); amod(language_NN_5, important_JJ_4); prep_in(language_NN_5, era_NN_9); punct(language_NN_5, ,_,_10); conj(language_NN_5, education_NN_12); det(era_NN_9, the_DT_7); nn(era_NN_9, Internet_NNP_8); amod(education_NN_12, English_JJ_11); nsubjpass(enriched_VBN_15, language_NN_5); aux(enriched_VBN_15, should_MD_13); auxpass(enriched_VBN_15, be_VB_14); punct(enriched_VBN_15, ._._16)',
'pattern': '{arg1} <nsubj< {rel:NN} >prep_in> {slot0:NN} >nn> {arg2}',
'rel': 'be language of',
'search_query': 'english language internet',
'sentence': 'English being the most important language in the Internet era , English education should be enriched .',
'slot0': 'era'}
``
### Data Fields
For ollie_lemmagrep:
* rel: the relationship phrase/verb phrase. This may be empty, which represents the "be" relationship.
* arg1: the first argument in the relationship
* arg2: the second argument in the relationship.
* chunk: a tag of each token in the sentence, showing the pos chunks
* pos: part of speech tagging of the sentence
* sentence: the sentence
* sentence_cnt: the number of copies of this sentence encountered
* search_query: a combintion of rel, arg1, arg2
* words: the lemma of the words of the sentence separated by commas
For ollie_patterned:
* rel: the relationship phrase/verb phrase.
* arg1: the first argument in the relationship
* arg2: the second argument in the relationship.
* slot0: the third argument in the relationship, which might be empty.
* pattern: a parse pattern for the relationship
* parse: a dependency parse forthe sentence
* search_query: a combintion of rel, arg1, arg2
* sentence: the senence
### Data Splits
There are no splits.
## Dataset Creation
### Curation Rationale
This dataset was created as part of research on open information extraction.
### Source Data
#### Initial Data Collection and Normalization
See the research paper on OLlie. The training data is extracted from web pages (Cluebweb09).
#### Who are the source language producers?
The Ollie authors at the Univeristy of Washington and data from Cluebweb09 and the open web.
### Annotations
#### Annotation process
The various parsers and code from the Ollie alogrithm.
#### Who are the annotators?
Machine annotated.
### Personal and Sensitive Information
Unkown, but likely there are names of famous individuals.
## Considerations for Using the Data
### Social Impact of Dataset
The goal for the work is to help machines learn to extract information form open domains.
### Discussion of Biases
Since the data is gathered from the web, there is likely to be biased text and relationships.
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The authors of Ollie at The University of Washington
### Licensing Information
The University of Washington academic license: https://raw.githubusercontent.com/knowitall/ollie/master/LICENSE
### Citation Information
```
@inproceedings{ollie-emnlp12,
author = {Mausam and Michael Schmitz and Robert Bart and Stephen Soderland and Oren Etzioni},
title = {Open Language Learning for Information Extraction},
booktitle = {Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CONLL)},
year = {2012}
}
```
### Contributions
Thanks to [@ontocord](https://github.com/ontocord) for adding this dataset. |