|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Ollie""" |
|
|
|
|
|
import bz2 |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{ollie-emnlp12, |
|
author = {Mausam and Michael Schmitz and Robert Bart and Stephen Soderland and Oren Etzioni}, |
|
title = {Open Language Learning for Information Extraction}, |
|
booktitle = {Proceedings of Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CONLL)}, |
|
year = {2012} |
|
}""" |
|
|
|
|
|
_DESCRIPTION = """The Ollie dataset includes two configs for the data |
|
used to train the Ollie informatation extraction algorithm, for 18M |
|
sentences and 3M sentences respectively. |
|
|
|
This data is for academic use only. From the authors: |
|
|
|
Ollie is a program that automatically identifies and extracts binary |
|
relationships from English sentences. Ollie is designed for Web-scale |
|
information extraction, where target relations are not specified in |
|
advance. |
|
|
|
Ollie is our second-generation information extraction system . Whereas |
|
ReVerb operates on flat sequences of tokens, Ollie works with the |
|
tree-like (graph with only small cycles) representation using |
|
Stanford's compression of the dependencies. This allows Ollie to |
|
capture expression that ReVerb misses, such as long-range relations. |
|
|
|
Ollie also captures context that modifies a binary relation. Presently |
|
Ollie handles attribution (He said/she believes) and enabling |
|
conditions (if X then). |
|
|
|
More information is available at the Ollie homepage: |
|
https://knowitall.github.io/ollie/ |
|
""" |
|
|
|
|
|
_LICENSE = """The University of Washington acamdemic license: |
|
https://raw.githubusercontent.com/knowitall/ollie/master/LICENSE |
|
""" |
|
|
|
_URLs = { |
|
"ollie_lemmagrep": "http://knowitall.cs.washington.edu/ollie/data/lemmagrep.txt.bz2", |
|
"ollie_patterned": "http://knowitall.cs.washington.edu/ollie/data/patterned-all.txt.bz2", |
|
} |
|
|
|
|
|
class Ollie(datasets.GeneratorBasedBuilder): |
|
"""Ollie dataset for knowledge bases and knowledge graphs and underlying sentences.""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="ollie_lemmagrep", description="The Ollie training data", version="1.1.0"), |
|
datasets.BuilderConfig( |
|
name="ollie_patterned", description="The Ollie data used in the Ollie paper.", version="1.1.0" |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ollie_lemmagrep" |
|
|
|
def _info(self): |
|
if self.config.name == "ollie_lemmagrep": |
|
features = datasets.Features( |
|
{ |
|
"arg1": datasets.Value("string"), |
|
"arg2": datasets.Value("string"), |
|
"rel": datasets.Value("string"), |
|
"search_query": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"words": datasets.Value("string"), |
|
"pos": datasets.Value("string"), |
|
"chunk": datasets.Value("string"), |
|
"sentence_cnt": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"rel": datasets.Value("string"), |
|
"arg1": datasets.Value("string"), |
|
"arg2": datasets.Value("string"), |
|
"slot0": datasets.Value("string"), |
|
"search_query": datasets.Value("string"), |
|
"pattern": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"parse": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="https://knowitall.github.io/ollie/", |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples from the Ollie predicates and sentences.""" |
|
|
|
with bz2.open(filepath, "rt") as f: |
|
id_ = -1 |
|
if self.config.name == "ollie_lemmagrep": |
|
for row in f: |
|
row = row.strip().split("\t") |
|
id_ += 1 |
|
if len(row) == 8: |
|
yield id_, { |
|
"arg1": row[0].strip(), |
|
"arg2": row[1].strip(), |
|
"rel": "", |
|
"search_query": row[2].strip(), |
|
"sentence": row[3].strip(), |
|
"words": row[4].strip(), |
|
"pos": row[5].strip(), |
|
"chunk": row[6].strip(), |
|
"sentence_cnt": row[7].strip(), |
|
} |
|
else: |
|
yield id_, { |
|
"arg1": row[1].strip(), |
|
"arg2": row[2].strip(), |
|
"rel": row[0].strip(), |
|
"search_query": row[3].strip(), |
|
"sentence": row[4].strip(), |
|
"words": row[5].strip(), |
|
"pos": row[6].strip(), |
|
"chunk": row[7].strip(), |
|
"sentence_cnt": row[8].strip(), |
|
} |
|
else: |
|
for row in f: |
|
row = row.strip().split("\t") |
|
id_ += 1 |
|
if len(row) == 7: |
|
yield id_, { |
|
"rel": row[0].strip(), |
|
"arg1": row[1].strip(), |
|
"arg2": row[2].strip(), |
|
"slot0": "", |
|
"search_query": row[3].strip(), |
|
"pattern": row[4].strip(), |
|
"sentence": row[5].strip(), |
|
"parse": row[6].strip(), |
|
} |
|
else: |
|
yield id_, { |
|
"rel": row[0].strip(), |
|
"arg1": row[1].strip(), |
|
"arg2": row[2].strip(), |
|
"slot0": row[7].strip(), |
|
"search_query": row[3].strip(), |
|
"pattern": row[4].strip(), |
|
"sentence": row[5].strip(), |
|
"parse": row[6].strip(), |
|
} |
|
|