--- license: cc-by-4.0 dataset_info: features: - name: id dtype: string - name: audio dtype: audio - name: transcription dtype: string - name: summary dtype: string - name: summary1 dtype: string - name: summary2 dtype: string - name: summary3 dtype: string splits: - name: core num_bytes: 17683719490.0 num_examples: 50000 - name: duc2003 num_bytes: 244384744.0 num_examples: 624 - name: validation num_bytes: 342668783.0 num_examples: 1000 - name: test num_bytes: 1411039659.0 num_examples: 4000 download_size: 19837902893 dataset_size: 19681812676.0 configs: - config_name: default data_files: - split: core path: data/core-* - split: duc2003 path: data/duc2003-* - split: validation path: data/validation-* - split: test path: data/test-* --- # Mega-SSum - A large-scale English *sentence-wise speech summarization* (Sen-SSum) dataset - Consists of 3.8M+ synthesized speech, transcription, summary triplets - Derived from the Gigaword dataset [Rush+2015](https://aclanthology.org/D15-1044/) # Overview - The dataset is divided into five splits: train/core/dev/eval/duc2003. (See below table) - We added a new evaluation split "*test*" for in-domain evaluation. - The train split is here: [MegaSSum(train)](https://huggingface.co/datasets/komats/mega-ssum-train). | orig. data | split | #samples | #speakers | total dur. (hrs) | ave. dur. (sec) | CR* (%) | |:----------:|:---------:|:---------:|:---------:|:----------------:|:---------------:|--------:| | Gigaword | train | 3,800,000 | 2,559 | 11,678.2 | 11.1 | 26.2 | | Gigaword | core | 50,000 | 2,559 | 154.6 | 11.1 | 25.8 | | Gigaword | valid | 1,000 | 96 | 3.0 | 10.7 | 25.1 | | Gigaword | test | 4,000 | 80 | 12.5 | 11.2 | 24.1 | | DUC2003 | duc2003 | 624 | 80 | 2.1 | 12.2 | 27.5 | *CR (compression rate, %) = #words in summary / #words in transcription * 100. Lower is shorter summary. # Notes - The core set is identical to the first 50k samples of the train split. - You may train your model and report the results only with the core set because the train split is very large. - Using the entire train split is generally not recommended unless there are special reasons (e.g., to investigate the upper bound). - The duc2003 split has four reference summaries for each speech. You can report the best score from 4 scores. - Spoken sentences were generated using VITS [Kim+2021](https://proceedings.mlr.press/v139/kim21f.html) trained with LibriTTS-R [Koizumi+2023](https://www.isca-archive.org/interspeech_2023/koizumi23_interspeech.html). - More details and some experiments on this dataset can be found [here](https://www.isca-archive.org/interspeech_2024/matsuura24_interspeech.html#). # Citation - This dataset [Matsuura+2024](https://www.isca-archive.org/interspeech_2024/matsuura24_interspeech.html): ``` @inproceedings{matsuura24_interspeech, title = {{Sentence-wise Speech Summarization}: Task, Datasets, and End-to-End Modeling with LM Knowledge Distillation}, author = {Kohei Matsuura and Takanori Ashihara and Takafumi Moriya and Masato Mimura and Takatomo Kano and Atsunori Ogawa and Marc Delcroix}, year = {2024}, booktitle = {Interspeech 2024}, pages = {1945--1949}, } ``` - The Gigaword dataset [Rush+2015](https://aclanthology.org/D15-1044/): ``` @article{Rush_2015, title={A Neural Attention Model for Abstractive Sentence Summarization}, journal={Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing}, author={Rush, Alexander M. and Chopra, Sumit and Weston, Jason}, year={2015} } ``` - VITS TTS [Kim+2021](https://proceedings.mlr.press/v139/kim21f.html): ``` @InProceedings{pmlr-v139-kim21f, title = {Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech}, author = {Kim, Jaehyeon and Kong, Jungil and Son, Juhee}, booktitle = {Proceedings of the 38th International Conference on Machine Learning}, pages = {5530--5540}, year = {2021}, } ``` - LibriTTS-R [Koizumi+2023](https://www.isca-archive.org/interspeech_2023/koizumi23_interspeech.html): ``` @inproceedings{koizumi23_interspeech, author={Yuma Koizumi and Heiga Zen and Shigeki Karita and Yifan Ding and Kohei Yatabe and Nobuyuki Morioka and Michiel Bacchiani and Yu Zhang and Wei Han and Ankur Bapna}, title={{LibriTTS-R}: A Restored Multi-Speaker Text-to-Speech Corpus}, year=2023, booktitle={Proc. INTERSPEECH 2023}, pages={5496--5500}, } ```