Datasets:

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
riversong commited on
Commit
4de4098
·
1 Parent(s): c136647

add load_scripts.py

Browse files
Files changed (1) hide show
  1. load_script.py +154 -0
load_script.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @article{yang2022oasum,
29
+ title={Oasum: Large-scale open domain aspect-based summarization},
30
+ author={Yang, Xianjun and Song, Kaiqiang and Cho, Sangwoo and Wang, Xiaoyang and Pan, Xiaoman and Petzold, Linda and Yu, Dong},
31
+ journal={arXiv preprint arXiv:2212.09233},
32
+ year={2022}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ OASum: A high-quality large-scale open-domain aspect-based summarization dataset
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = ""
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = "CC-BY-SA-3.0"
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLS = {
52
+ "train": "https://huggingface.co/datasets/kqsong/OAsum/resolve/main/train.jsonl",
53
+ "valid": "https://huggingface.co/datasets/kqsong/OAsum/resolve/main/valid.jsonl",
54
+ "test": "https://huggingface.co/datasets/kqsong/OAsum/resolve/main/test.jsonl"
55
+ }
56
+
57
+
58
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
59
+ class NewDataset(datasets.GeneratorBasedBuilder):
60
+ """TODO: Short description of my dataset."""
61
+
62
+ VERSION = datasets.Version("1.0.0")
63
+
64
+ # This is an example of a dataset with multiple configurations.
65
+ # If you don't want/need to define several sub-sets in your dataset,
66
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
67
+
68
+ # If you need to make complex sub-parts in the datasets with configurable options
69
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
70
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
71
+
72
+ # You will be able to load one or the other configurations in the following list with
73
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
74
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
75
+ BUILDER_CONFIGS = [
76
+ datasets.BuilderConfig(name="train", version=VERSION, description="Train Split"),
77
+ datasets.BuilderConfig(name="valid", version=VERSION, description="Valid Split"),
78
+ datasets.BuilderConfig(name="test", version=VERSION, description="Test Split")
79
+ ]
80
+
81
+ DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
82
+
83
+ def _info(self):
84
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
85
+ features = datasets.Features(
86
+ {
87
+ "title": datasets.Value(dtype="string", id=None),
88
+ "document": datasets.Sequence(feature=datasets.Value(dtype="string", id=None), length=-1, id=None),
89
+ "aspect": datasets.Value(dtype="string", id=None),
90
+ "aspect_sents": datasets.Sequence(feature=datasets.Value(dtype="int64", id=None), length=-1, id=None),
91
+ "summary": datasets.Sequence(feature=datasets.Value(dtype="string", id=None), length=-1, id=None)
92
+ }
93
+ )
94
+ return datasets.DatasetInfo(
95
+ # This is the description that will appear on the datasets page.
96
+ description=_DESCRIPTION,
97
+ # This defines the different columns of the dataset and their types
98
+ features=features, # Here we define them above because they are different between the two configurations
99
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
100
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
101
+ # supervised_keys=("sentence", "label"),
102
+ # Homepage of the dataset for documentation
103
+ homepage=_HOMEPAGE,
104
+ # License for the dataset if available
105
+ license=_LICENSE,
106
+ # Citation for the dataset
107
+ citation=_CITATION,
108
+ )
109
+
110
+ def _split_generators(self, dl_manager):
111
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
112
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
113
+
114
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
115
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
116
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
117
+ urls = _URLS[self.config.name]
118
+ data_dir = dl_manager.download_and_extract(urls)
119
+ return [
120
+ datasets.SplitGenerator(
121
+ name=datasets.Split.TRAIN,
122
+ # These kwargs will be passed to _generate_examples
123
+ gen_kwargs={
124
+ "filepath": os.path.join(data_dir, "train.jsonl"),
125
+ "split": "train",
126
+ },
127
+ ),
128
+ datasets.SplitGenerator(
129
+ name=datasets.Split.VALIDATION,
130
+ # These kwargs will be passed to _generate_examples
131
+ gen_kwargs={
132
+ "filepath": os.path.join(data_dir, "valid.jsonl"),
133
+ "split": "valid",
134
+ },
135
+ ),
136
+ datasets.SplitGenerator(
137
+ name=datasets.Split.TEST,
138
+ # These kwargs will be passed to _generate_examples
139
+ gen_kwargs={
140
+ "filepath": os.path.join(data_dir, "test.jsonl"),
141
+ "split": "test"
142
+ },
143
+ ),
144
+ ]
145
+
146
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
147
+ def _generate_examples(self, filepath, split):
148
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
149
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
150
+ with open(filepath, encoding="utf-8") as f:
151
+ for key, row in enumerate(f):
152
+ data = json.loads(row)
153
+ yield key, data
154
+