# Lint as: python3 """Reddit Topics Targz Demo Dataset.""" import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } """ _DESCRIPTION = """\ Demo """ _URL = "https://github.com/jamescalam/hf-datasets/raw/main/01_builder_script/dataset.tar.gz" #replace this with the tar file for own dataset class RedditTopicsTargz(datasets.GeneratorBasedBuilder): """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sub": datasets.Value("string"), "title": datasets.Value("string"), "selftext": datasets.Value("string"), "upvote_ratio": datasets.Value("float32"), "id": datasets.Value("string"), "created_utc": datasets.Value("float32") } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://rajpurkar.github.io/SQuAD-explorer/", citation=_CITATION, ) def _split_generators(self, dl_manager): path = dl_manager.download_and_extract(_URL) #takes a URL to a tar file and returns filepath in HF to that data return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": path+'/dataset.jsonl'}) ] #filepath gets passed to generate examples def _generate_examples(self, filepath): #output rows of the dataset """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) idx = 0 #open the file and read the lines with open(filepath, encoding="utf-8") as fp: for line in fp: #load json line print(json.loads(line)) obj = json.loads(line) yield idx, obj idx += 1