kumuji commited on
Commit
8d32397
·
verified ·
1 Parent(s): 62132e5

Upload 6 files

Browse files
Files changed (6) hide show
  1. camera.zip +3 -0
  2. gtCoarse.zip +3 -0
  3. labels.py +181 -0
  4. laf_table.pdf +0 -0
  5. timestamp.tgz +3 -0
  6. vehicle.zip +3 -0
camera.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2586031f5fead27aa7ecc663a6ef5e991d5ec79ee195072967d5ed9353df8ba
3
+ size 967060
gtCoarse.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53b6d3ab000f08b1fb59d70c1398eecc4d82a7baf4e9cf74fbf60d1858abe9ac
3
+ size 37756896
labels.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python
2
+ #
3
+ # Cityscapes labels
4
+ #
5
+
6
+ from collections import namedtuple
7
+
8
+
9
+ #--------------------------------------------------------------------------------
10
+ # Definitions
11
+ #--------------------------------------------------------------------------------
12
+
13
+ # a label and all meta information
14
+ Label = namedtuple( 'Label' , [
15
+
16
+ 'name' , # The identifier of this label, e.g. 'car', 'person', ... .
17
+ # We use them to uniquely name a class
18
+
19
+ 'id' , # An integer ID that is associated with this label.
20
+ # The IDs are used to represent the label in ground truth images
21
+ # An ID of -1 means that this label does not have an ID and thus
22
+ # is ignored when creating ground truth images (e.g. license plate).
23
+
24
+ 'trainId' , # An integer ID that overwrites the ID above, when creating ground truth
25
+ # images for training.
26
+ # For training, multiple labels might have the same ID. Then, these labels
27
+ # are mapped to the same class in the ground truth images. For the inverse
28
+ # mapping, we use the label that is defined first in the list below.
29
+ # For example, mapping all void-type classes to the same ID in training,
30
+ # might make sense for some approaches.
31
+
32
+ 'category' , # The name of the category that this label belongs to
33
+
34
+ 'categoryId' , # The ID of this category. Used to create ground truth images
35
+ # on category level.
36
+
37
+ 'hasInstances', # Whether this label distinguishes between single instances or not
38
+
39
+ 'ignoreInEval', # Whether pixels having this class as ground truth label are ignored
40
+ # during evaluations or not
41
+
42
+ 'color' , # The color of this label
43
+ ] )
44
+
45
+
46
+ #--------------------------------------------------------------------------------
47
+ # A list of all labels
48
+ #--------------------------------------------------------------------------------
49
+
50
+ # Please adapt the train IDs as appropriate for you approach.
51
+ # Note that you might want to ignore labels with ID 255 during training.
52
+ # Make sure to provide your results using the original IDs and not the training IDs.
53
+ # Note that many IDs are ignored in evaluation and thus you never need to predict these!
54
+
55
+ labels = [
56
+ # name id trainId hasInstances ignoreInEval color
57
+ Label( 'unlabeled' , 0 , 0 , False , True , ( 0, 0, 0) ),
58
+ Label( 'ego vehicle' , 0 , 0 , False , True , ( 0, 0, 0) ),
59
+ Label( 'rectification border' , 0 , 0 , False , True , ( 0, 0, 0) ),
60
+ Label( 'out of roi' , 0 , 0 , False , True , ( 0, 0, 0) ),
61
+ Label( 'background' , 0 , 0 , False , False , ( 0, 0, 0) ),
62
+ Label( 'free' , 1 , 1 , False , False , (128, 64,128) ),
63
+ Label( '01' , 2 , 2 , True , False , ( 0, 0,142) ),
64
+ Label( '02' , 3 , 2 , True , False , ( 0, 0,142) ),
65
+ Label( '03' , 4 , 2 , True , False , ( 0, 0,142) ),
66
+ Label( '04' , 5 , 2 , True , False , ( 0, 0,142) ),
67
+ Label( '05' , 6 , 2 , True , False , ( 0, 0,142) ),
68
+ Label( '06' , 7 , 2 , True , False , ( 0, 0,142) ),
69
+ Label( '07' , 8 , 2 , True , False , ( 0, 0,142) ),
70
+ Label( '08' , 9 , 2 , True , False , ( 0, 0,142) ),
71
+ Label( '09' , 10 , 2 , True , False , ( 0, 0,142) ),
72
+ Label( '10' , 11 , 2 , True , False , ( 0, 0,142) ),
73
+ Label( '11' , 12 , 2 , True , False , ( 0, 0,142) ),
74
+ Label( '12' , 13 , 2 , True , False , ( 0, 0,142) ),
75
+ Label( '13' , 14 , 2 , True , False , ( 0, 0,142) ),
76
+ Label( '14' , 15 , 2 , True , False , ( 0, 0,142) ),
77
+ Label( '15' , 16 , 2 , True , False , ( 0, 0,142) ),
78
+ Label( '16' , 17 , 2 , True , False , ( 0, 0,142) ),
79
+ Label( '17' , 18 , 2 , True , False , ( 0, 0,142) ),
80
+ Label( '18' , 19 , 2 , True , False , ( 0, 0,142) ),
81
+ Label( '19' , 20 , 2 , True , False , ( 0, 0,142) ),
82
+ Label( '20' , 21 , 2 , True , False , ( 0, 0,142) ),
83
+ Label( '21' , 22 , 2 , True , False , ( 0, 0,142) ),
84
+ Label( '22' , 23 , 2 , True , False , ( 0, 0,142) ),
85
+ Label( '23' , 24 , 2 , True , False , ( 0, 0,142) ),
86
+ Label( '24' , 25 , 2 , True , False , ( 0, 0,142) ),
87
+ Label( '25' , 26 , 2 , True , False , ( 0, 0,142) ),
88
+ Label( '26' , 27 , 2 , True , False , ( 0, 0,142) ),
89
+ Label( '27' , 28 , 2 , True , False , ( 0, 0,142) ),
90
+ Label( '28' , 29 , 2 , True , False , ( 0, 0,142) ),
91
+ Label( '29' , 30 , 2 , True , False , ( 0, 0,142) ),
92
+ Label( '30' , 31 , 0 , True , False , ( 0, 0, 0) ),
93
+ Label( '31' , 32 , 2 , True , False , ( 0, 0,142) ),
94
+ Label( '32' , 33 , 0 , True , False , ( 0, 0, 0) ),
95
+ Label( '33' , 34 , 0 , True , False , ( 0, 0, 0) ),
96
+ Label( '34' , 35 , 2 , True , False , ( 0, 0,142) ),
97
+ Label( '35' , 36 , 0 , True , False , ( 0, 0, 0) ),
98
+ Label( '36' , 37 , 0 , True , False , ( 0, 0, 0) ),
99
+ Label( '37' , 38 , 0 , True , False , ( 0, 0, 0) ),
100
+ Label( '38' , 39 , 0 , True , False , ( 0, 0, 0) ),
101
+ Label( '39' , 40 , 2 , True , False , ( 0, 0,142) ),
102
+ Label( '40' , 41 , 2 , True , False , ( 0, 0,142) ),
103
+ Label( '41' , 42 , 2 , True , False , ( 0, 0,142) ),
104
+ Label( '42' , 43 , 2 , True , False , ( 0, 0,142) ),
105
+
106
+ ]
107
+
108
+
109
+ #--------------------------------------------------------------------------------
110
+ # Create dictionaries for a fast lookup
111
+ #--------------------------------------------------------------------------------
112
+
113
+ name2label = { label.name : label for label in labels }
114
+ id2label = { label.id : label for label in labels }
115
+ trainId2label = { label.trainId : label for label in reversed(labels) }
116
+ category2labels = {}
117
+ for label in labels:
118
+ category = label.category
119
+ if category in category2labels:
120
+ category2labels[category].append(label)
121
+ else:
122
+ category2labels[category] = [label]
123
+
124
+ #--------------------------------------------------------------------------------
125
+ # Assure single instance name
126
+ #--------------------------------------------------------------------------------
127
+
128
+ def assureSingleInstanceName( name ):
129
+ # if the name is known, it is not a group
130
+ if name in name2label:
131
+ return name
132
+ # test if the name actually denotes a group
133
+ if not name.endswith("group"):
134
+ return name
135
+ # remove group
136
+ name = name[:-len("group")]
137
+ # test if the new name exists
138
+ if not name in name2label:
139
+ return None
140
+ # test if the new name denotes a label that actually has instances
141
+ if not name2label[name].hasInstances:
142
+ return None
143
+ # all good then
144
+ return name
145
+
146
+ #--------------------------------------------------------------------------------
147
+ # Main for testing
148
+ #--------------------------------------------------------------------------------
149
+
150
+ if __name__ == "__main__":
151
+ # Print all the labels
152
+ print "List of cityscapes labels:"
153
+ print
154
+ print " {:>13} | {:>3} | {:>7} | {:>14} | {:>7} | {:>12} | {:>12}".format( 'name', 'id', 'trainId', 'category', 'categoryId', 'hasInstances', 'ignoreInEval' )
155
+ print " " + ('-' * 88)
156
+ for label in labels:
157
+ print " {:>13} | {:>3} | {:>7} | {:>14} | {:>7} | {:>12} | {:>12}".format( label.name, label.id, label.trainId, label.category, label.categoryId, label.hasInstances, label.ignoreInEval )
158
+ print
159
+
160
+ print "Example usages:"
161
+
162
+ # Map from name to label
163
+ name = 'car'
164
+ id = name2label[name].id
165
+ print "ID of label '{name}': {id}".format( name=name, id=id )
166
+
167
+ # Map from ID to label
168
+ category = id2label[id].category
169
+ print "Category of label with ID '{id}': {category}".format( id=id, category=category )
170
+
171
+ # Map from trainID to label
172
+ trainId = 0
173
+ name = trainId2label[trainId].name
174
+ print "Name of label with trainID '{id}': {name}".format( id=trainId, name=name )
175
+
176
+ # Print list of label names for each train ID
177
+ print "Labels for train IDs: ", trainId2label.keys()
178
+ print " ",
179
+ for trainId in trainId2label:
180
+ print trainId2label[trainId].name + "," ,
181
+ print
laf_table.pdf ADDED
Binary file (25.4 kB). View file
 
timestamp.tgz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c9df889e40c77b4e2d4e8da05e1d1c3fefd7f9d44fbb45ec71c358c4e3fb54
3
+ size 43130
vehicle.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9efbb9cefd5092f4cea3afa03b4ea1dee6f46d7d85fd8854627636c9a9a4aa2
3
+ size 925845