Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
metadata
pretty_name: SberQuAD
annotations_creators:
- crowdsourced
language_creators:
- found
- crowdsourced
language:
- ru
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
paperswithcode_id: sberquad
Dataset Card for sberquad
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: [Needs More Information]
- Repository: https://github.com/sberbank-ai/data-science-journey-2017
- Paper: https://arxiv.org/abs/1912.09723
- Leaderboard: [Needs More Information]
- Point of Contact: [Needs More Information]
Dataset Summary
Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. Russian original analogue presented in Sberbank Data Science Journey 2017.
Supported Tasks and Leaderboards
[Needs More Information]
Languages
Russian
Dataset Structure
Data Instances
{
"context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
"id": 14754,
"qas": [
{
"id": 60544,
"question": "Где встречаются первые упоминания о строении человеческого тела?",
"answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
}
]
}
Data Fields
- id: a int32 feature
- title: a string feature
- context: a string feature
- question: a string feature
- answers: a dictionary feature containing:
- text: a string feature
- answer_start: a int32 feature
Data Splits
name | train | validation | test |
---|---|---|---|
plain_text | 45328 | 5036 | 23936 |
Dataset Creation
Curation Rationale
[Needs More Information]
Source Data
Initial Data Collection and Normalization
[Needs More Information]
Who are the source language producers?
[Needs More Information]
Annotations
Annotation process
[Needs More Information]
Who are the annotators?
[Needs More Information]
Personal and Sensitive Information
[Needs More Information]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
[Needs More Information]
Licensing Information
[Needs More Information]
Citation Information
@article{DBLP:journals/corr/abs-1912-09723,
author = {Pavel Efimov and
Leonid Boytsov and
Pavel Braslavski},
title = {SberQuAD - Russian Reading Comprehension Dataset: Description and
Analysis},
journal = {CoRR},
volume = {abs/1912.09723},
year = {2019},
url = {http://arxiv.org/abs/1912.09723},
eprinttype = {arXiv},
eprint = {1912.09723},
timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Contributions
Thanks to @alenusch for adding this dataset.