Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
Commit
•
92d74b2
1
Parent(s):
59515e9
Upload data files directly to the HF repository (#3)
Browse files- Upload data files directly to the HF repository (0a46891173b3eacf17ac7b1e3a5c479c5549cbb7)
- Delete legacy dataset_infos.json (069c6fed2da1f047c3f1e4faa7bb439631b096f7)
- Update metadata in dataset card (d9f69d76cd901db660a03b8099072d5b3de89d51)
Co-authored-by: Pavel Efimov <pefimov@users.noreply.huggingface.co>
- README.md +7 -7
- data/dev_v1.0.json.gz +3 -0
- data/origin_test.json.gz +3 -0
- data/train_v1.0.json.gz +3 -0
- dataset_infos.json +0 -1
- sberquad.py +2 -1
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
pretty_name: SberQuAD
|
3 |
annotations_creators:
|
4 |
- crowdsourced
|
5 |
language_creators:
|
@@ -20,7 +19,9 @@ task_categories:
|
|
20 |
task_ids:
|
21 |
- extractive-qa
|
22 |
paperswithcode_id: sberquad
|
|
|
23 |
dataset_info:
|
|
|
24 |
features:
|
25 |
- name: id
|
26 |
dtype: int32
|
@@ -36,19 +37,18 @@ dataset_info:
|
|
36 |
dtype: string
|
37 |
- name: answer_start
|
38 |
dtype: int32
|
39 |
-
config_name: sberquad
|
40 |
splits:
|
41 |
- name: train
|
42 |
-
num_bytes:
|
43 |
num_examples: 45328
|
44 |
- name: validation
|
45 |
-
num_bytes:
|
46 |
num_examples: 5036
|
47 |
- name: test
|
48 |
-
num_bytes:
|
49 |
num_examples: 23936
|
50 |
-
download_size:
|
51 |
-
dataset_size:
|
52 |
---
|
53 |
|
54 |
|
|
|
1 |
---
|
|
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
language_creators:
|
|
|
19 |
task_ids:
|
20 |
- extractive-qa
|
21 |
paperswithcode_id: sberquad
|
22 |
+
pretty_name: SberQuAD
|
23 |
dataset_info:
|
24 |
+
config_name: sberquad
|
25 |
features:
|
26 |
- name: id
|
27 |
dtype: int32
|
|
|
37 |
dtype: string
|
38 |
- name: answer_start
|
39 |
dtype: int32
|
|
|
40 |
splits:
|
41 |
- name: train
|
42 |
+
num_bytes: 71631541
|
43 |
num_examples: 45328
|
44 |
- name: validation
|
45 |
+
num_bytes: 7972953
|
46 |
num_examples: 5036
|
47 |
- name: test
|
48 |
+
num_bytes: 36397776
|
49 |
num_examples: 23936
|
50 |
+
download_size: 10491714
|
51 |
+
dataset_size: 116002270
|
52 |
---
|
53 |
|
54 |
|
data/dev_v1.0.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9145c18e890e84fd070272fcaa607a688efd61debf36b89bc2b96654ac77d18
|
3 |
+
size 1927670
|
data/origin_test.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d24ee67e71ea95163342b72d8fb36914fa7d0b261b3552ed5824f355fe76963
|
3 |
+
size 2725921
|
data/train_v1.0.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a05221fe35eb1b4fcd17b8acca1d957e12d098783d8e8a2ebb2348f6c437b0a
|
3 |
+
size 5838123
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"sberquad": {"description": "Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. Russian original analogue presented in Sberbank Data Science Journey 2017.\n", "citation": "@article{Efimov_2020,\n title={SberQuAD \u2013 Russian Reading Comprehension Dataset: Description and Analysis},\n ISBN={9783030582197},\n ISSN={1611-3349},\n url={http://dx.doi.org/10.1007/978-3-030-58219-7_1},\n DOI={10.1007/978-3-030-58219-7_1},\n journal={Experimental IR Meets Multilinguality, Multimodality, and Interaction},\n publisher={Springer International Publishing},\n author={Efimov, Pavel and Chertok, Andrey and Boytsov, Leonid and Braslavski, Pavel},\n year={2020},\n pages={3\u201315}\n}\n ", "homepage": "", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "sberquad", "config_name": "sberquad", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 71631661, "num_examples": 45328, "dataset_name": "sberquad"}, "validation": {"name": "validation", "num_bytes": 7972977, "num_examples": 5036, "dataset_name": "sberquad"}, "test": {"name": "test", "num_bytes": 36397848, "num_examples": 23936, "dataset_name": "sberquad"}}, "download_checksums": {"https://sc.link/PNWl": {"num_bytes": 38616884, "checksum": "861b55219f1549139e64b2eed325b54ce9c9c63b792a2c2b3cfbec997aa3d88e"}, "https://sc.link/W6oX": {"num_bytes": 8807953, "checksum": "247bede36a27f076f607117632f39eedb9bb1d80c34d93bbfaeda71fd30fd382"}, "https://sc.link/VOn9": {"num_bytes": 18622439, "checksum": "7793d389208271a76ab38a5dba5cebc98e72f45e99196a99e14b5a37c401c66f"}}, "download_size": 66047276, "post_processing_size": null, "dataset_size": 116002486, "size_in_bytes": 182049762}}
|
|
|
|
sberquad.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# coding=utf-8
|
2 |
"""SberQUAD: Sber Question Answering Dataset."""
|
3 |
|
|
|
4 |
import json
|
5 |
|
6 |
import datasets
|
@@ -33,7 +34,7 @@ from the corresponding reading passage, or the question might be unanswerable. \
|
|
33 |
Russian original analogue presented in Sberbank Data Science Journey 2017.
|
34 |
"""
|
35 |
|
36 |
-
_URLS = {"train": "
|
37 |
|
38 |
|
39 |
class Sberquad(datasets.GeneratorBasedBuilder):
|
|
|
1 |
# coding=utf-8
|
2 |
"""SberQUAD: Sber Question Answering Dataset."""
|
3 |
|
4 |
+
import os
|
5 |
import json
|
6 |
|
7 |
import datasets
|
|
|
34 |
Russian original analogue presented in Sberbank Data Science Journey 2017.
|
35 |
"""
|
36 |
|
37 |
+
_URLS = {"train": os.path.join("data", "train_v1.0.json.gz"), "dev": os.path.join("data", "dev_v1.0.json.gz"), "test": os.path.join("data", "origin_test.json.gz")}
|
38 |
|
39 |
|
40 |
class Sberquad(datasets.GeneratorBasedBuilder):
|