--- configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* - split: test path: data/test-* dataset_info: features: - name: correct_audio dtype: audio: sampling_rate: 16000 - name: correct_transcription dtype: string - name: correct_file dtype: string - name: wrong_audio dtype: audio: sampling_rate: 16000 - name: wrong_transcription dtype: string - name: wrong_file dtype: string splits: - name: train num_bytes: 25161014072.682 num_examples: 105241 - name: dev num_bytes: 3494489553.808 num_examples: 14244 - name: test num_bytes: 3315850038.204 num_examples: 14081 download_size: 31574494786 dataset_size: 31971353664.693996 license: mit language: - fr - en --- This dataset contains the French-English track of the benchmark from ICASSP 2024: Zero Resource Code-Switched Speech Benchmark Using Speech Utterance Pairs for Multiple Spoken Languages. Though the benchmark is originally designed to assess the semantic and syntactic abilities of the speech foundation models, you can also use this dataset for code-switching ASR. If you find this dataset helpful, please consider to cite the following paper: ``` @INPROCEEDINGS{10446737, author={Huang, Kuan-Po and Yang, Chih-Kai and Fu, Yu-Kuan and Dunbar, Ewan and Lee, Hung-Yi}, booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, title={Zero Resource Code-Switched Speech Benchmark Using Speech Utterance Pairs for Multiple Spoken Languages}, year={2024}, volume={}, number={}, pages={10006-10010}, keywords={Speech coding;Benchmark testing;Signal processing;Linguistics;Acoustics;Speech processing;Task analysis;Code-switch;Multilingual;Discrete unit;Zero resource;Self-supervised}, doi={10.1109/ICASSP48485.2024.10446737}} ```