|
{"name":"SMRHN.PlusU1.BL.on_cubeTriLin","declaration":"theorem SMRHN.PlusU1.BL.on_cubeTriLin {n : ℕ} (S : ACCSystemCharges.Charges (SMRHN.PlusU1 n).toACCSystemCharges) : ((SMνACCs.cubeTriLin (SMRHN.PlusU1.BL n).val) (SMRHN.PlusU1.BL n).val) S = 9 * SMνACCs.accGrav S - 24 * SMνACCs.accSU3 S"} |
|
{"name":"SMRHN.PlusU1.BL.addQuad_zero","declaration":"theorem SMRHN.PlusU1.BL.addQuad_zero {n : ℕ} (S : ACCSystemQuad.QuadSols (SMRHN.PlusU1 n).toACCSystemQuad) (a : ℚ) : SMRHN.PlusU1.BL.addQuad S a 0 = a • S"} |
|
{"name":"SMRHN.PlusU1.BL₁","declaration":"/-- $B - L$ in the 1-family case. -/\ndef SMRHN.PlusU1.BL₁ : ACCSystem.Sols (SMRHN.PlusU1 1)"} |
|
{"name":"SMRHN.PlusU1.BL₁_val","declaration":"theorem SMRHN.PlusU1.BL₁_val (i : Fin (SMRHN.PlusU1 1).numberCharges) : SMRHN.PlusU1.BL₁.val i =\n match i with\n | 0 => 1\n | 1 => -1\n | 2 => -1\n | 3 => -3\n | 4 => 3\n | 5 => 3"} |
|
{"name":"SMRHN.PlusU1.BL.add_quad","declaration":"theorem SMRHN.PlusU1.BL.add_quad {n : ℕ} (S : ACCSystemQuad.QuadSols (SMRHN.PlusU1 n).toACCSystemQuad) (a : ℚ) (b : ℚ) : SMνACCs.accQuad (a • S.val + b • (SMRHN.PlusU1.BL n).val) = 0"} |
|
{"name":"SMRHN.PlusU1.BL.on_quadBiLin_AFL","declaration":"theorem SMRHN.PlusU1.BL.on_quadBiLin_AFL {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.PlusU1 n).toACCSystemLinear) : (SMνACCs.quadBiLin (SMRHN.PlusU1.BL n).val) S.val = 0"} |
|
{"name":"SMRHN.PlusU1.BL_val","declaration":"theorem SMRHN.PlusU1.BL_val (n : ℕ) : (SMRHN.PlusU1.BL n).val = (SMRHN.familyUniversal n) SMRHN.PlusU1.BL₁.val"} |
|
{"name":"SMRHN.PlusU1.BL","declaration":"/-- $B - L$ in the $n$-family case. -/\ndef SMRHN.PlusU1.BL (n : ℕ) : ACCSystem.Sols (SMRHN.PlusU1 n)"} |
|
{"name":"SMRHN.PlusU1.BL.add_AFL_cube","declaration":"theorem SMRHN.PlusU1.BL.add_AFL_cube {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.PlusU1 n).toACCSystemLinear) (a : ℚ) (b : ℚ) : SMνACCs.accCube (a • S.val + b • (SMRHN.PlusU1.BL n).val) =\n a ^ 2 * (a * SMνACCs.accCube S.val + 3 * b * ((SMνACCs.cubeTriLin S.val) S.val) (SMRHN.PlusU1.BL n).val)"} |
|
{"name":"SMRHN.PlusU1.BL.add_AFL_quad","declaration":"theorem SMRHN.PlusU1.BL.add_AFL_quad {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.PlusU1 n).toACCSystemLinear) (a : ℚ) (b : ℚ) : SMνACCs.accQuad (a • S.val + b • (SMRHN.PlusU1.BL n).val) = a ^ 2 * SMνACCs.accQuad S.val"} |
|
{"name":"SMRHN.PlusU1.BL.addQuad","declaration":"/-- The `QuadSol` obtained by adding $B-L$ to a `QuadSol`. -/\ndef SMRHN.PlusU1.BL.addQuad {n : ℕ} (S : ACCSystemQuad.QuadSols (SMRHN.PlusU1 n).toACCSystemQuad) (a : ℚ) (b : ℚ) : ACCSystemQuad.QuadSols (SMRHN.PlusU1 n).toACCSystemQuad"} |
|
{"name":"SMRHN.PlusU1.BL.on_quadBiLin","declaration":"theorem SMRHN.PlusU1.BL.on_quadBiLin {n : ℕ} (S : ACCSystemCharges.Charges (SMRHN.PlusU1 n).toACCSystemCharges) : (SMνACCs.quadBiLin (SMRHN.PlusU1.BL n).val) S =\n 1 / 2 * SMνACCs.accYY S + 3 / 2 * SMνACCs.accSU2 S - 2 * SMνACCs.accSU3 S"} |
|
{"name":"SMRHN.PlusU1.BL.on_cubeTriLin_AFL","declaration":"theorem SMRHN.PlusU1.BL.on_cubeTriLin_AFL {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.PlusU1 n).toACCSystemLinear) : ((SMνACCs.cubeTriLin (SMRHN.PlusU1.BL n).val) (SMRHN.PlusU1.BL n).val) S.val = 0"} |
|
|