|
import gc
|
|
from glob import glob
|
|
from io import BytesIO
|
|
from pathlib import Path
|
|
|
|
import clip
|
|
import pandas as pd
|
|
import torch
|
|
import ujson
|
|
import webdataset as wds
|
|
from PIL import Image
|
|
from sentence_transformers import SentenceTransformer
|
|
from torchvision.transforms import (CenterCrop, Compose, InterpolationMode,
|
|
Normalize, Resize, ToTensor)
|
|
from tqdm import tqdm
|
|
|
|
torch.multiprocessing.set_sharing_strategy('file_system')
|
|
|
|
|
|
def load_image(jpg):
|
|
return jpg, Image.open(BytesIO(jpg))
|
|
|
|
|
|
def load_json(json):
|
|
return ujson.loads(json)
|
|
|
|
|
|
load_preprocess_map = {
|
|
'jpg': load_image,
|
|
'json': load_json,
|
|
}
|
|
|
|
|
|
def convert_image_to_rgb(im):
|
|
return im.convert("RGB")
|
|
|
|
|
|
|
|
image_transforms = Compose([
|
|
Resize(224, interpolation=InterpolationMode.BICUBIC),
|
|
CenterCrop(224),
|
|
convert_image_to_rgb,
|
|
ToTensor(),
|
|
Normalize((0.48145466, 0.4578275, 0.40821073),
|
|
(0.26862954, 0.26130258, 0.27577711)),
|
|
])
|
|
|
|
|
|
def image_preprocess(jpgs):
|
|
jpg_orig, im = jpgs
|
|
im = image_transforms(im)
|
|
return jpg_orig, im
|
|
|
|
|
|
texts_to_check = [
|
|
'page_title',
|
|
'section_title',
|
|
'hierarchical_section_title',
|
|
'caption',
|
|
'caption_attribution_description',
|
|
'caption_alt_text_description',
|
|
'context_page_description',
|
|
'context_section_description'
|
|
]
|
|
|
|
|
|
def meta_preprocess(meta: dict):
|
|
return {
|
|
'captions': [meta[text] for text in texts_to_check if text in meta and meta[text]],
|
|
'orig': meta
|
|
}
|
|
|
|
|
|
mclip_preprocess_map = {
|
|
'jpg': image_preprocess,
|
|
'json': meta_preprocess
|
|
}
|
|
|
|
|
|
def log(msg):
|
|
print(msg, end='\n\n\n\n')
|
|
return msg
|
|
|
|
|
|
def func(wds_dataset_str, device=None, batch_size=4, **kwargs):
|
|
nocap = 0
|
|
if device is None:
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
print('Loading models:')
|
|
model, _ = clip.load('ViT-B/32', device=device, jit=False)
|
|
mclip = SentenceTransformer(
|
|
'sentence-transformers/clip-ViT-B-32-multilingual-v1', device=device)
|
|
cosine_similarity = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
|
|
print('Finished loading models')
|
|
|
|
ds = wds.WebDataset(wds_dataset_str, shardshuffle=False).map_dict(
|
|
**load_preprocess_map).map_dict(**mclip_preprocess_map).to_tuple('jpg', 'json').batched(batch_size)
|
|
dl = wds.WebLoader(ds, batch_size=None, shuffle=False, **kwargs)
|
|
|
|
writer = wds.ShardWriter('%05d.tar', 10000)
|
|
for i, batch in enumerate(tqdm(dl)):
|
|
try:
|
|
imss, metas = batch
|
|
orig_jpgs, ims = zip(*imss)
|
|
ims = torch.stack(ims)
|
|
|
|
captionss = [meta['captions'] for meta in metas]
|
|
|
|
with torch.no_grad():
|
|
image_features = torch.unbind(
|
|
model.encode_image(ims.to(device)).float())
|
|
text_featuress = [mclip.encode(captions, convert_to_tensor=True).to(
|
|
device).float() for captions in captionss]
|
|
|
|
similarities = [
|
|
cosine_similarity(image_feature.repeat(
|
|
len(text_features), 1), text_features).tolist()
|
|
for image_feature, text_features in zip(image_features, text_featuress)
|
|
]
|
|
|
|
captionss = [[cap for cap, sim in zip(
|
|
captions, similarity) if sim > 0.26] for captions, similarity in zip(captionss, similarities)]
|
|
|
|
for orig_jpg, captions, meta in zip(orig_jpgs, captionss, metas):
|
|
if len(captions) == 0:
|
|
nocap += 1
|
|
tqdm.write(f'No captions: {nocap}')
|
|
continue
|
|
|
|
sample = {
|
|
'__key__': f'{writer.count:08}',
|
|
'jpg': orig_jpg,
|
|
'txt': ''.join(captions),
|
|
'json': ujson.dumps(meta['orig'])
|
|
}
|
|
writer.write(sample)
|
|
if i % 25 == 0:
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
except Exception as e:
|
|
print(f'Error: {e}')
|
|
raise e
|
|
writer.close()
|
|
|