File size: 6,831 Bytes
4ce27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{
    "scifiplots": {
        "description": "A collection of long-running (80+ episodes) science fiction TV show plot synopses, scraped from Fandom.com wikis. Collected Nov 2017. Each episode is considered a \"story\".\n\nContains plot summaries from: * Babylon 5 (https://babylon5.fandom.com/wiki/Main_Page) - 84 stories\n * Doctor Who (https://tardis.fandom.com/wiki/Doctor_Who_Wiki) - 311 stories\n * Doctor Who spin-offs - 95 stories\n * Farscape (https://farscape.fandom.com/wiki/Farscape_Encyclopedia_Project:Main_Page) - 90 stories\n * Fringe (https://fringe.fandom.com/wiki/FringeWiki) - 87 stories\n * Futurama (https://futurama.fandom.com/wiki/Futurama_Wiki) - 87 stories\n * Stargate (https://stargate.fandom.com/wiki/Stargate_Wiki) - 351 stories\n * Star Trek (https://memory-alpha.fandom.com/wiki/Star_Trek) - 701 stories\n * Star Wars books (https://starwars.fandom.com/wiki/Main_Page) - 205 stories, each book is a story\n * Star Wars Rebels - 65 stories\n * X-Files (https://x-files.fandom.com/wiki/Main_Page) - 200 stories\nTotal: 2276 stories\n\nDataset is \"eventified\" and generalized (see LJ Martin, P Ammanabrolu, X Wang, W Hancock, S Singh, B Harrison, and MO Riedl. Event Representations for Automated Story Generation with Deep Neural Nets, Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018. for details on these processes.) and split into train-test-validation sets---separated by story so that full stories will stay together---for converting events into full sentences.",
        "citation": "@inproceedings{Ammanabrolu2020AAAI, title={Story Realization: Expanding Plot Events into Sentences}, author={Prithviraj Ammanabrolu and Ethan Tien and Wesley Cheung and Zhaochen Luo and William Ma and Lara J. Martin and Mark O. Riedl}, journal={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2020}, volume={34}, number={05}, url={https://ojs.aaai.org//index.php/AAAI/article/view/6232} }",
        "homepage": "",
        "license": "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/",
        "features": {
            "label-coarse": {
                "num_classes": 6,
                "names": ["EVENT", "GEN_EVENT", "SENT", "GEN_SENT", "ENTITIES"],
                "names_file": null,
                "id": null,
                "_type": "ClassLabel"
            },
            "text": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            }
        },
        "supervised_keys": null,
        "builder_name": "scifiplots",
        "config_name": "default",
        "version": {
            "version_str": "1.0.0", "description": null,
            "datasets_version_to_prepare": null,
            "major": 1, "minor": 0, "patch": 0
        },
        "splits": {
            "test-input": {
                "name": "test-input",
                "num_bytes": 2166129,
                "num_examples": 30938,
                "dataset_name": "Scifi_TV_Shows"
            },
            "test-output": {
                "name": "test-output",
                "num_bytes": 3240195,
                "num_examples": 30938,
                "dataset_name": "Scifi_TV_Shows"
            },
            "train-input": {
                "name": "train-input",
                "num_bytes": 17854168,
                "num_examples": 257184,
                "dataset_name": "Scifi_TV_Shows"
            },
            "train-output": {
                "name": "train-output",
                "num_bytes": 22577919,
                "num_examples": 257184,
                "dataset_name": "Scifi_TV_Shows"
            },
            "val-input": {
                "name": "val-input",
                "num_bytes": 2284607,
                "num_examples": 32855,
                "dataset_name": "Scifi_TV_Shows"
            },
            "val-output": {
                "name": "val-output",
                "num_bytes": 3010135,
                "num_examples": 32855,
                "dataset_name": "Scifi_TV_Shows"
            }
        },
        "download_checksums": {
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-test.txt": {
                "num_bytes": 13911482,
                "checksum": "ad4768958b4995d09dd1265963a2539a9538768e58f722fccdd09a429e550f75"
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-train.txt": {
                "num_bytes": 103446973,
                "checksum": "94b0e14ea0e753188efa3ec41cdf3d699df69074952d5f8d429fbff46a28c0a9"
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-val.txt": {
                "num_bytes": 13320551,
                "checksum": "21b6a6cd3dc2b615b78dc2f361fbbb977eed61bdfed4d550bf17d67fcbd55043"
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/all-sci-fi-data.txt": {
                "num_bytes": 130679006,
                "checksum": "f603d7b15d3cfc0ab03d2c8e8da84bf18d2054629453dce35abc304462d9b7c8"
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-test_input.txt": {
                "num_bytes": 2166129,
                "checksum": ""
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-test_output.txt": {
                "num_bytes": 3240195,
                "checksum": ""
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-train_input.txt": {
                "num_bytes": 17854168,
                "checksum": "33e7e6e04e0024c50c45243c677251760c9314bb7c4d4b22cab36f605df3e953"
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-train_output.txt": {
                "num_bytes": 22577919,
                "checksum": "c2df0a11bcb4fb9339a6f30b02e7b840f7977557e78831604c195f4b95d7d3df"
            },  
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-val_input.txt": {
                "num_bytes": 2284607,
                "checksum": ""
            },
            "https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-val_output.txt": {
                "num_bytes": 3010135,
                "checksum": ""
            }                                         
        },
        "download_size": 359212,
        "dataset_size": 413073,
        "size_in_bytes": 772285
    }
}