File size: 6,831 Bytes
4ce27f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
{
"scifiplots": {
"description": "A collection of long-running (80+ episodes) science fiction TV show plot synopses, scraped from Fandom.com wikis. Collected Nov 2017. Each episode is considered a \"story\".\n\nContains plot summaries from: * Babylon 5 (https://babylon5.fandom.com/wiki/Main_Page) - 84 stories\n * Doctor Who (https://tardis.fandom.com/wiki/Doctor_Who_Wiki) - 311 stories\n * Doctor Who spin-offs - 95 stories\n * Farscape (https://farscape.fandom.com/wiki/Farscape_Encyclopedia_Project:Main_Page) - 90 stories\n * Fringe (https://fringe.fandom.com/wiki/FringeWiki) - 87 stories\n * Futurama (https://futurama.fandom.com/wiki/Futurama_Wiki) - 87 stories\n * Stargate (https://stargate.fandom.com/wiki/Stargate_Wiki) - 351 stories\n * Star Trek (https://memory-alpha.fandom.com/wiki/Star_Trek) - 701 stories\n * Star Wars books (https://starwars.fandom.com/wiki/Main_Page) - 205 stories, each book is a story\n * Star Wars Rebels - 65 stories\n * X-Files (https://x-files.fandom.com/wiki/Main_Page) - 200 stories\nTotal: 2276 stories\n\nDataset is \"eventified\" and generalized (see LJ Martin, P Ammanabrolu, X Wang, W Hancock, S Singh, B Harrison, and MO Riedl. Event Representations for Automated Story Generation with Deep Neural Nets, Thirty-Second AAAI Conference on Artificial Intelligence (AAAI), 2018. for details on these processes.) and split into train-test-validation sets---separated by story so that full stories will stay together---for converting events into full sentences.",
"citation": "@inproceedings{Ammanabrolu2020AAAI, title={Story Realization: Expanding Plot Events into Sentences}, author={Prithviraj Ammanabrolu and Ethan Tien and Wesley Cheung and Zhaochen Luo and William Ma and Lara J. Martin and Mark O. Riedl}, journal={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2020}, volume={34}, number={05}, url={https://ojs.aaai.org//index.php/AAAI/article/view/6232} }",
"homepage": "",
"license": "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/",
"features": {
"label-coarse": {
"num_classes": 6,
"names": ["EVENT", "GEN_EVENT", "SENT", "GEN_SENT", "ENTITIES"],
"names_file": null,
"id": null,
"_type": "ClassLabel"
},
"text": {
"dtype": "string",
"id": null,
"_type": "Value"
}
},
"supervised_keys": null,
"builder_name": "scifiplots",
"config_name": "default",
"version": {
"version_str": "1.0.0", "description": null,
"datasets_version_to_prepare": null,
"major": 1, "minor": 0, "patch": 0
},
"splits": {
"test-input": {
"name": "test-input",
"num_bytes": 2166129,
"num_examples": 30938,
"dataset_name": "Scifi_TV_Shows"
},
"test-output": {
"name": "test-output",
"num_bytes": 3240195,
"num_examples": 30938,
"dataset_name": "Scifi_TV_Shows"
},
"train-input": {
"name": "train-input",
"num_bytes": 17854168,
"num_examples": 257184,
"dataset_name": "Scifi_TV_Shows"
},
"train-output": {
"name": "train-output",
"num_bytes": 22577919,
"num_examples": 257184,
"dataset_name": "Scifi_TV_Shows"
},
"val-input": {
"name": "val-input",
"num_bytes": 2284607,
"num_examples": 32855,
"dataset_name": "Scifi_TV_Shows"
},
"val-output": {
"name": "val-output",
"num_bytes": 3010135,
"num_examples": 32855,
"dataset_name": "Scifi_TV_Shows"
}
},
"download_checksums": {
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-test.txt": {
"num_bytes": 13911482,
"checksum": "ad4768958b4995d09dd1265963a2539a9538768e58f722fccdd09a429e550f75"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-train.txt": {
"num_bytes": 103446973,
"checksum": "94b0e14ea0e753188efa3ec41cdf3d699df69074952d5f8d429fbff46a28c0a9"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/Test-Train-Val/all-sci-fi-data-val.txt": {
"num_bytes": 13320551,
"checksum": "21b6a6cd3dc2b615b78dc2f361fbbb977eed61bdfed4d550bf17d67fcbd55043"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/all-sci-fi-data.txt": {
"num_bytes": 130679006,
"checksum": "f603d7b15d3cfc0ab03d2c8e8da84bf18d2054629453dce35abc304462d9b7c8"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-test_input.txt": {
"num_bytes": 2166129,
"checksum": ""
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-test_output.txt": {
"num_bytes": 3240195,
"checksum": ""
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-train_input.txt": {
"num_bytes": 17854168,
"checksum": "33e7e6e04e0024c50c45243c677251760c9314bb7c4d4b22cab36f605df3e953"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-train_output.txt": {
"num_bytes": 22577919,
"checksum": "c2df0a11bcb4fb9339a6f30b02e7b840f7977557e78831604c195f4b95d7d3df"
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-val_input.txt": {
"num_bytes": 2284607,
"checksum": ""
},
"https://huggingface.co/datasets/lara-martin/Scifi_TV_Shows/blob/main/ Input_OutputFiles/all-sci-fi-data-val_output.txt": {
"num_bytes": 3010135,
"checksum": ""
}
},
"download_size": 359212,
"dataset_size": 413073,
"size_in_bytes": 772285
}
}
|