File size: 2,431 Bytes
77d6f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2a7d2
77d6f7a
 
8b2a7d2
 
 
 
 
77d6f7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2a7d2
 
 
77d6f7a
 
8b2a7d2
77d6f7a
 
8b2a7d2
77d6f7a
 
 
8b2a7d2
77d6f7a
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import datasets
import pandas as pd

_CITATION = """\
@InProceedings{AbusiveClauses:dataset,
title = {AbusiveClauses},
author={},
year={2022}
}
"""

_DESCRIPTION = "Binary Abusive Clauses in Polish"

_HOMEPAGE = ""
_LICENSE = "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
_LABELS = ["KLAUZULA_ABUZYWNA", "BEZPIECZNE_POSTANOWIENIE_UMOWNE"]

_URLS = {
    "train": "https://huggingface.co/datasets/laugustyniak/abusive-clauses-pl/resolve/main/train.csv",
    "dev": "https://huggingface.co/datasets/laugustyniak/abusive-clauses-pl/resolve/main/dev.csv",
    "test": "https://huggingface.co/datasets/laugustyniak/abusive-clauses-pl/resolve/main/test.csv",
}


class AbusiveClausesConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(AbusiveClausesConfig, self).__init__(**kwargs)


class AbusiveClausesDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="abusive-clauses-pl", version=VERSION)
    ]

    def _info(self):
        features = datasets.Features(
            {
                "text": datasets.Value("string"),
                "label": datasets.features.ClassLabel(
                    names=_LABELS, num_classes=len(_LABELS)
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["dev"]},
            ),
        ]

    def _generate_examples(self, filepath: str):
        df = pd.read_csv(filepath)
        for idx, example in enumerate(df.itertuples(index=False)):
            yield idx, {"text": example.text, "label": example.label}