Datasets:
laugustyniak
commited on
Commit
•
6e80c25
1
Parent(s):
8fd6083
add loader and readme
Browse files- README.md +0 -0
- political_advertising_loader.py +110 -0
README.md
ADDED
Binary file (2.7 kB). View file
|
|
political_advertising_loader.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
_CITATION = """\
|
7 |
+
@inproceedings{augustyniak-etal-2020-political,
|
8 |
+
title = "Political Advertising Dataset: the use case of the Polish 2020 Presidential Elections",
|
9 |
+
author = "Augustyniak, Lukasz and
|
10 |
+
Rajda, Krzysztof and
|
11 |
+
Kajdanowicz, Tomasz and
|
12 |
+
Bernaczyk, Micha{\l}",
|
13 |
+
booktitle = "Proceedings of the The Fourth Widening Natural Language Processing Workshop",
|
14 |
+
month = jul,
|
15 |
+
year = "2020",
|
16 |
+
address = "Seattle, USA",
|
17 |
+
publisher = "Association for Computational Linguistics",
|
18 |
+
url = "https://www.aclweb.org/anthology/2020.winlp-1.28",
|
19 |
+
pages = "110--114"
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
_DESCRIPTION = "Polish Political Advertising Dataset"
|
24 |
+
|
25 |
+
_HOMEPAGE = "https://github.com/laugustyniak/misinformation"
|
26 |
+
|
27 |
+
DATA_PATH = Path(".")
|
28 |
+
|
29 |
+
|
30 |
+
class PoliticalAdvertisingConfig(datasets.BuilderConfig):
|
31 |
+
def __init__(self, **kwargs):
|
32 |
+
super(PoliticalAdvertisingConfig, self).__init__(**kwargs)
|
33 |
+
|
34 |
+
|
35 |
+
class PoliticalAdvertisingDataset(datasets.GeneratorBasedBuilder):
|
36 |
+
VERSION = datasets.Version("1.0.0")
|
37 |
+
|
38 |
+
TRAIN_FILE = DATA_PATH / "train.json"
|
39 |
+
VAL_FILE = DATA_PATH / "dev.json"
|
40 |
+
TEST_FILE = DATA_PATH / "test.json"
|
41 |
+
|
42 |
+
BUILDER_CONFIGS = [
|
43 |
+
datasets.BuilderConfig(name="political-advertising-pl", version=VERSION)
|
44 |
+
]
|
45 |
+
|
46 |
+
def _info(self):
|
47 |
+
features = datasets.Features(
|
48 |
+
{
|
49 |
+
"id": datasets.Value("string"),
|
50 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
51 |
+
"tags": datasets.Sequence(
|
52 |
+
datasets.features.ClassLabel(
|
53 |
+
names=[
|
54 |
+
"O",
|
55 |
+
"B-DEFENSE_AND_SECURITY",
|
56 |
+
"I-DEFENSE_AND_SECURITY",
|
57 |
+
"B-EDUCATION",
|
58 |
+
"I-EDUCATION",
|
59 |
+
"B-FOREIGN_POLICY",
|
60 |
+
"I-FOREIGN_POLICY",
|
61 |
+
"B-HEALHCARE",
|
62 |
+
"I-HEALHCARE",
|
63 |
+
"B-IMMIGRATION",
|
64 |
+
"I-IMMIGRATION",
|
65 |
+
"B-INFRASTRUCTURE_AND_ENVIROMENT",
|
66 |
+
"I-INFRASTRUCTURE_AND_ENVIROMENT",
|
67 |
+
"B-POLITICAL_AND_LEGAL_SYSTEM",
|
68 |
+
"I-POLITICAL_AND_LEGAL_SYSTEM",
|
69 |
+
"B-SOCIETY",
|
70 |
+
"I-SOCIETY",
|
71 |
+
"B-WELFARE",
|
72 |
+
"I-WELFARE",
|
73 |
+
]
|
74 |
+
)
|
75 |
+
),
|
76 |
+
}
|
77 |
+
)
|
78 |
+
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=features,
|
82 |
+
supervised_keys=None,
|
83 |
+
homepage=_HOMEPAGE,
|
84 |
+
citation=_CITATION,
|
85 |
+
)
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager):
|
88 |
+
return [
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": str(self.TRAIN_FILE)}
|
91 |
+
),
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": str(self.TEST_FILE)}
|
94 |
+
),
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.VALIDATION,
|
97 |
+
gen_kwargs={"filepath": str(self.VAL_FILE)},
|
98 |
+
),
|
99 |
+
]
|
100 |
+
|
101 |
+
def _generate_examples(self, filepath: str):
|
102 |
+
df = pd.read_json(filepath)
|
103 |
+
for row_id, row in df.iterrows():
|
104 |
+
yield row_id, {
|
105 |
+
"id": row.id,
|
106 |
+
"text": row.text,
|
107 |
+
"tags": row.tags,
|
108 |
+
"url": row.url,
|
109 |
+
"tweet_id": row.tweet_id,
|
110 |
+
}
|