File size: 105,631 Bytes
481136a
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
86c2b0b
481136a
 
 
 
86c2b0b
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
86c2b0b
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
86c2b0b
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
86c2b0b
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
 
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
 
481136a
 
86c2b0b
 
481136a
 
 
 
 
 
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
 
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
86c2b0b
 
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
 
481136a
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
 
 
481136a
 
 
 
 
 
 
 
 
 
 
 
 
 
86c2b0b
481136a
 
86c2b0b
 
481136a
 
 
 
 
86c2b0b
 
 
481136a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
{
  "results": {
    "leaderboard-fr": {
      " ": " ",
      "alias": "leaderboard-fr"
    },
    "leaderboard_bbh_fr": {
      " ": " ",
      "alias": " - leaderboard_bbh_fr"
    },
    "leaderboard_bbh_compréhension_de_la_date": {
      "alias": "  - leaderboard_bbh_compréhension_de_la_date",
      "acc_norm,none": 0.52,
      "acc_norm_stderr,none": 0.031660853408495185
    },
    "leaderboard_bbh_compréhension_des_sports": {
      "alias": "  - leaderboard_bbh_compréhension_des_sports",
      "acc_norm,none": 0.568,
      "acc_norm_stderr,none": 0.031391810765429407
    },
    "leaderboard_bbh_comptage_d_objets": {
      "alias": "  - leaderboard_bbh_comptage_d_objets",
      "acc_norm,none": 0.332,
      "acc_norm_stderr,none": 0.02984403904746589
    },
    "leaderboard_bbh_déduction_logique_cinq_objets": {
      "alias": "  - leaderboard_bbh_déduction_logique_cinq_objets",
      "acc_norm,none": 0.424,
      "acc_norm_stderr,none": 0.03131803437491615
    },
    "leaderboard_bbh_déduction_logique_sept_objets": {
      "alias": "  - leaderboard_bbh_déduction_logique_sept_objets",
      "acc_norm,none": 0.424,
      "acc_norm_stderr,none": 0.03131803437491614
    },
    "leaderboard_bbh_déduction_logique_trois_objets": {
      "alias": "  - leaderboard_bbh_déduction_logique_trois_objets",
      "acc_norm,none": 0.604,
      "acc_norm_stderr,none": 0.03099319785457785
    },
    "leaderboard_bbh_désambiguïsation_qa": {
      "alias": "  - leaderboard_bbh_désambiguïsation_qa",
      "acc_norm,none": 0.508,
      "acc_norm_stderr,none": 0.0316821564314138
    },
    "leaderboard_bbh_expressions_booléennes": {
      "alias": "  - leaderboard_bbh_expressions_booléennes",
      "acc_norm,none": 0.72,
      "acc_norm_stderr,none": 0.028454148277832308
    },
    "leaderboard_bbh_formes_géométriques": {
      "alias": "  - leaderboard_bbh_formes_géométriques",
      "acc_norm,none": 0.448,
      "acc_norm_stderr,none": 0.03151438761115355
    },
    "leaderboard_bbh_hyperbate": {
      "alias": "  - leaderboard_bbh_hyperbate",
      "acc_norm,none": 0.52,
      "acc_norm_stderr,none": 0.031660853408495185
    },
    "leaderboard_bbh_jugement_causal": {
      "alias": "  - leaderboard_bbh_jugement_causal",
      "acc_norm,none": 0.5935828877005348,
      "acc_norm_stderr,none": 0.036013904358574426
    },
    "leaderboard_bbh_naviguer": {
      "alias": "  - leaderboard_bbh_naviguer",
      "acc_norm,none": 0.68,
      "acc_norm_stderr,none": 0.029561724955241047
    },
    "leaderboard_bbh_pingouins_sur_une_table": {
      "alias": "  - leaderboard_bbh_pingouins_sur_une_table",
      "acc_norm,none": 0.4315068493150685,
      "acc_norm_stderr,none": 0.04113130264537192
    },
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": {
      "alias": "  - leaderboard_bbh_raisonnement_sur_les_objets_colorés",
      "acc_norm,none": 0.408,
      "acc_norm_stderr,none": 0.031145209846548505
    },
    "leaderboard_bbh_recommandation_de_film": {
      "alias": "  - leaderboard_bbh_recommandation_de_film",
      "acc_norm,none": 0.58,
      "acc_norm_stderr,none": 0.031277999504636604
    },
    "leaderboard_bbh_sarcasmes": {
      "alias": "  - leaderboard_bbh_sarcasmes",
      "acc_norm,none": 0.6573033707865169,
      "acc_norm_stderr,none": 0.03567395111782634
    },
    "leaderboard_bbh_sophismes_formels": {
      "alias": "  - leaderboard_bbh_sophismes_formels",
      "acc_norm,none": 0.5,
      "acc_norm_stderr,none": 0.031686212526223896
    },
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": {
      "alias": "  - leaderboard_bbh_suivi_objets_mélangés_cinq_objets",
      "acc_norm,none": 0.18,
      "acc_norm_stderr,none": 0.02434689065029353
    },
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": {
      "alias": "  - leaderboard_bbh_suivi_objets_mélangés_sept_objets",
      "acc_norm,none": 0.116,
      "acc_norm_stderr,none": 0.020293429803083848
    },
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": {
      "alias": "  - leaderboard_bbh_suivi_objets_mélangés_trois_objets",
      "acc_norm,none": 0.328,
      "acc_norm_stderr,none": 0.02975239182447538
    },
    "leaderboard_bbh_séquences_temporelles": {
      "alias": "  - leaderboard_bbh_séquences_temporelles",
      "acc_norm,none": 0.144,
      "acc_norm_stderr,none": 0.022249407735450207
    },
    "leaderboard_bbh_toile_de_mensonges": {
      "alias": "  - leaderboard_bbh_toile_de_mensonges",
      "acc_norm,none": 0.528,
      "acc_norm_stderr,none": 0.031636489531544396
    },
    "leaderboard_gpqa_fr": {
      " ": " ",
      "alias": " - leaderboard_gpqa_fr"
    },
    "leaderboard_gpqa_diamond_fr": {
      "alias": "  - leaderboard_gpqa_diamond_fr",
      "acc_norm,none": 0.27411167512690354,
      "acc_norm_stderr,none": 0.03186182418247317
    },
    "leaderboard_gpqa_extended_fr": {
      "alias": "  - leaderboard_gpqa_extended_fr",
      "acc_norm,none": 0.32044198895027626,
      "acc_norm_stderr,none": 0.020044181857199275
    },
    "leaderboard_gpqa_main_fr": {
      "alias": "  - leaderboard_gpqa_main_fr",
      "acc_norm,none": 0.2867132867132867,
      "acc_norm_stderr,none": 0.021859191373710545
    },
    "leaderboard_ifeval_fr": {
      "alias": " - leaderboard_ifeval_fr",
      "prompt_level_strict_acc,none": 0.02330097087378641,
      "prompt_level_strict_acc_stderr,none": 0.006654046431364177,
      "inst_level_strict_acc,none": 0.2284843869002285,
      "inst_level_strict_acc_stderr,none": "N/A",
      "prompt_level_loose_acc,none": 0.02330097087378641,
      "prompt_level_loose_acc_stderr,none": 0.006654046431364177,
      "inst_level_loose_acc,none": 0.22924600152322924,
      "inst_level_loose_acc_stderr,none": "N/A"
    },
    "leaderboard_math_hard_fr": {
      " ": " ",
      "alias": " - leaderboard_math_hard_fr"
    },
    "leaderboard_math_algebra_hard_fr": {
      "alias": "  - leaderboard_math_algebra_hard_fr",
      "exact_match,none": 0.26,
      "exact_match_stderr,none": 0.023479552770033787
    },
    "leaderboard_math_counting_and_prob_hard_fr": {
      "alias": "  - leaderboard_math_counting_and_prob_hard_fr",
      "exact_match,none": 0.05102040816326531,
      "exact_match_stderr,none": 0.015757346860192083
    },
    "leaderboard_math_geometry_hard_fr": {
      "alias": "  - leaderboard_math_geometry_hard_fr",
      "exact_match,none": 0.0970873786407767,
      "exact_match_stderr,none": 0.020678894572219587
    },
    "leaderboard_math_num_theory_hard_fr": {
      "alias": "  - leaderboard_math_num_theory_hard_fr",
      "exact_match,none": 0.10138248847926268,
      "exact_match_stderr,none": 0.020537238029371616
    },
    "leaderboard_math_prealgebra_hard_fr": {
      "alias": "  - leaderboard_math_prealgebra_hard_fr",
      "exact_match,none": 0.37168141592920356,
      "exact_match_stderr,none": 0.04566320230210243
    },
    "leaderboard_math_precalculus_hard_fr": {
      "alias": "  - leaderboard_math_precalculus_hard_fr",
      "exact_match,none": 0.023809523809523808,
      "exact_match_stderr,none": 0.016734147465330175
    },
    "leaderboard_mmlu_fr": {
      "alias": " - leaderboard_mmlu_fr",
      "acc,none": 0.5634524996439254,
      "acc_stderr,none": 0.004185481129071199
    },
    "leaderboard_musr_fr": {
      " ": " ",
      "alias": " - leaderboard_musr_fr"
    },
    "leaderboard_musr_murder_mysteries_fr": {
      "alias": "  - leaderboard_musr_murder_mysteries_fr",
      "acc_norm,none": 0.468,
      "acc_norm_stderr,none": 0.031621252575725504
    },
    "leaderboard_musr_object_placements_fr": {
      "alias": "  - leaderboard_musr_object_placements_fr",
      "acc_norm,none": 0.32421875,
      "acc_norm_stderr,none": 0.029312444800629493
    },
    "leaderboard_musr_team_allocation_fr": {
      "alias": "  - leaderboard_musr_team_allocation_fr",
      "acc_norm,none": 0.256,
      "acc_norm_stderr,none": 0.027657108718204912
    }
  },
  "group_subtasks": {
    "leaderboard_musr_fr": [
      "leaderboard_musr_murder_mysteries_fr",
      "leaderboard_musr_object_placements_fr",
      "leaderboard_musr_team_allocation_fr"
    ],
    "leaderboard_math_hard_fr": [
      "leaderboard_math_algebra_hard_fr",
      "leaderboard_math_counting_and_prob_hard_fr",
      "leaderboard_math_geometry_hard_fr",
      "leaderboard_math_num_theory_hard_fr",
      "leaderboard_math_prealgebra_hard_fr",
      "leaderboard_math_precalculus_hard_fr"
    ],
    "leaderboard_gpqa_fr": [
      "leaderboard_gpqa_diamond_fr",
      "leaderboard_gpqa_extended_fr",
      "leaderboard_gpqa_main_fr"
    ],
    "leaderboard_bbh_fr": [
      "leaderboard_bbh_expressions_booléennes",
      "leaderboard_bbh_jugement_causal",
      "leaderboard_bbh_compréhension_de_la_date",
      "leaderboard_bbh_désambiguïsation_qa",
      "leaderboard_bbh_sophismes_formels",
      "leaderboard_bbh_formes_géométriques",
      "leaderboard_bbh_hyperbate",
      "leaderboard_bbh_déduction_logique_cinq_objets",
      "leaderboard_bbh_déduction_logique_sept_objets",
      "leaderboard_bbh_déduction_logique_trois_objets",
      "leaderboard_bbh_recommandation_de_film",
      "leaderboard_bbh_naviguer",
      "leaderboard_bbh_comptage_d_objets",
      "leaderboard_bbh_pingouins_sur_une_table",
      "leaderboard_bbh_raisonnement_sur_les_objets_colorés",
      "leaderboard_bbh_sarcasmes",
      "leaderboard_bbh_compréhension_des_sports",
      "leaderboard_bbh_séquences_temporelles",
      "leaderboard_bbh_suivi_objets_mélangés_cinq_objets",
      "leaderboard_bbh_suivi_objets_mélangés_sept_objets",
      "leaderboard_bbh_suivi_objets_mélangés_trois_objets",
      "leaderboard_bbh_toile_de_mensonges"
    ],
    "leaderboard-fr": [
      "leaderboard_mmlu_fr",
      "leaderboard_bbh_fr",
      "leaderboard_gpqa_fr",
      "leaderboard_math_hard_fr",
      "leaderboard_ifeval_fr",
      "leaderboard_musr_fr"
    ]
  },
  "configs": {
    "leaderboard_bbh_compréhension_de_la_date": {
      "task": "leaderboard_bbh_compréhension_de_la_date",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "compréhension_de_la_date",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)"
      ],
      "description": "Déduire la date à partir du contexte.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Aujourd'hui, c'est la veille de Noël de 1937. Quelle est la date il y a 10 jours en MM/JJ/AAAA ?\n\nOptions :\n\n(A) 14/12/2026\n\n(B) 14/12/1950\n\n(C) 14/12/2007\n\n(D) 14/12/1937\n\n(E) 14/07/1938\n\n(F) 14/12/1988\n",
            "target": "(D)"
          },
          {
            "input": "Demain, nous serons le 12/11/2019. Quelle est la date d'il y a un an à partir d'aujourd'hui en MM/JJ/AAAA ?\n\nOptions :\n\n(A) 04/09/2018\n\n(B) 11/11/2018\n\n(C) 25/08/2018\n\n(D) 02/11/2018\n\n(E) 04/11/2018\n",
            "target": "(B)"
          },
          {
            "input": "Jane et John se sont mariés le 2 janvier 1958. Aujourd'hui, c'est leur 5e anniversaire. Quelle est la date de demain en MM/JJ/AAAA ?\n\nOptions :\n\n(A) 11/01/1961\n\n(B) 03/01/1963\n\n(C) 18/01/1961\n\n(D) 14/10/1960\n\n(E) 03/01/1982\n\n(F) 03/12/1960\n",
            "target": "(B)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_compréhension_des_sports": {
      "task": "leaderboard_bbh_compréhension_des_sports",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "compréhension_des_sports",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "Oui",
        "Non"
      ],
      "description": "Déterminez si une phrase artificiellement construite en rapport avec le sport est plausible ou Non.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "La phrase suivante est-elle plausible ? \"Bam Adebayo a marqué un layup inversé lors de la finale de la Conférence Ouest.\"",
            "target": "Oui"
          },
          {
            "input": "La phrase suivante est-elle plausible ? \"Santi Cazorla a marqué un touchdown.\"",
            "target": "Non"
          },
          {
            "input": "La phrase suivante est-elle plausible ? \"DeMar DeRozan a été sanctionné pour goaltending.\"",
            "target": "Oui"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_comptage_d_objets": {
      "task": "leaderboard_bbh_comptage_d_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "comptage_d_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "0",
        "1",
        "2",
        "3",
        "4",
        "5",
        "6",
        "7",
        "8",
        "9",
        "10",
        "11",
        "12",
        "13",
        "14",
        "15",
        "16",
        "17",
        "18"
      ],
      "description": "Questions qui impliquent d'énumérer des objets et de demander au modèle de les compter.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "J'ai une mûre, une clarinette, une nectarine, une prune, une fraise, une banane,\nune flûte, une orange et un violon. Combien de fruits ai-je ?\n",
            "target": "6"
          },
          {
            "input": "J'ai une orange, une framboise, deux pêches, une mûre, une pomme, un raisin,\nune nectarine et trois prunes. Combien de fruits ai-je ?\n",
            "target": "11"
          },
          {
            "input": "J'ai une tête de laitue, une tête de brocoli, un oignon, une branche de céleri,\ndeux carottes, une gousse d'ail et une patate douce. Combien de légumes ai-je ?\n",
            "target": "8"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_déduction_logique_cinq_objets": {
      "task": "leaderboard_bbh_déduction_logique_cinq_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "déduction_logique_cinq_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)"
      ],
      "description": "Une tâche de déduction logique qui nécessite de déduire l'ordre d'une séquence d'objets.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nDans un tournoi de golf, il y avait trois golfeurs : Amy, Eli et Eve. Eve a terminé\ndevant Amy. Eli a terminé derrière Amy.\n\nOptions :\n\n(A) Amy a terminé dernière\n\n(B) Eli a terminé dernier\n\n(C) Eve a terminé dernière\n",
            "target": "(B)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre blanc, un livre vert et un livre\norange. Le livre vert est à droite du livre blanc. Le livre orange est tout à droite.\n\nOptions :\n\n(A) Le livre blanc est tout à gauche\n\n(B) Le livre vert est tout à gauche\n\n(C) Le livre orange est tout à gauche\n",
            "target": "(A)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre rouge, un livre gris et un livre blanc.\nLe livre blanc est à gauche du livre gris. Le livre rouge est le deuxième en partant\nde la gauche.\n\nOptions :\n\n(A) Le livre rouge est tout à gauche\n\n(B) Le livre gris est tout à gauche\n\n(C) Le livre blanc est tout à gauche\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_déduction_logique_sept_objets": {
      "task": "leaderboard_bbh_déduction_logique_sept_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "déduction_logique_sept_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)",
        "(G)"
      ],
      "description": "Une tâche de déduction logique qui nécessite de déduire l'ordre d'une séquence d'objets.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nDans un tournoi de golf, il y avait trois golfeurs : Amy, Eli et Eve. Eve a terminé\ndevant Amy. Eli a terminé derrière Amy.\n\nOptions :\n\n(A) Amy a terminé dernière\n\n(B) Eli a terminé dernier\n\n(C) Eve a terminé dernière\n",
            "target": "(B)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre blanc, un livre vert et un livre\norange. Le livre vert est à droite du livre blanc. Le livre orange est tout à droite.\n\nOptions :\n\n(A) Le livre blanc est tout à gauche\n\n(B) Le livre vert est tout à gauche\n\n(C) Le livre orange est tout à gauche\n",
            "target": "(A)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre rouge, un livre gris et un livre blanc.\nLe livre blanc est à gauche du livre gris. Le livre rouge est le deuxième en partant\nde la gauche.\n\nOptions :\n\n(A) Le livre rouge est tout à gauche\n\n(B) Le livre gris est tout à gauche\n\n(C) Le livre blanc est tout à gauche\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_déduction_logique_trois_objets": {
      "task": "leaderboard_bbh_déduction_logique_trois_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "déduction_logique_trois_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)"
      ],
      "description": "Une tâche de déduction logique qui nécessite de déduire l'ordre d'une séquence d'objets.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nDans un tournoi de golf, il y avait trois golfeurs : Amy, Eli et Eve. Eve a terminé\ndevant Amy. Eli a terminé derrière Amy.\n\nOptions :\n\n(A) Amy a terminé dernière\n\n(B) Eli a terminé dernier\n\n(C) Eve a terminé dernière\n",
            "target": "(B)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre blanc, un livre vert et un livre\norange. Le livre vert est à droite du livre blanc. Le livre orange est tout à droite.\n\nOptions :\n\n(A) Le livre blanc est tout à gauche\n\n(B) Le livre vert est tout à gauche\n\n(C) Le livre orange est tout à gauche\n",
            "target": "(A)"
          },
          {
            "input": "Les paragraphes suivants décrivent chacun un ensemble de trois objets disposés\ndans un ordre fixe. Les déclarations sont logiquement cohérentes dans chaque paragraphe.\nSur une étagère, il y a trois livres : un livre rouge, un livre gris et un livre blanc.\nLe livre blanc est à gauche du livre gris. Le livre rouge est le deuxième en partant\nde la gauche.\n\nOptions :\n\n(A) Le livre rouge est tout à gauche\n\n(B) Le livre gris est tout à gauche\n\n(C) Le livre blanc est tout à gauche\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_désambiguïsation_qa": {
      "task": "leaderboard_bbh_désambiguïsation_qa",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "désambiguïsation_qa",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)"
      ],
      "description": "Clarifiez le sens des phrases avec des pronoms ambigus.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Dans les phrases suivantes, expliquez l'antécédent du pronom (à quoi le pronom\nfait référence), ou indiquez que c'est ambigu.\n\nPhrase : Le chef a dit au conseiller qu'ils ont pris un jour de congé.\n\nOptions :\n\n(A) Le chef a pris un jour de congé\n\n(B) Le conseiller a pris un jour de congé\n\n(C) Ambigu\n",
            "target": "(A)"
          },
          {
            "input": "Dans les phrases suivantes, expliquez l'antécédent du pronom (à quoi le pronom\nfait référence), ou indiquez que c'est ambigu.\n\nPhrase : Le manager a envoyé un message au secrétaire, mais il n'a pas encore répondu.\n\nOptions :\n\n(A) Le secrétaire n'a pas encore répondu\n\n(B) Le manager n'a pas encore répondu\n\n(C) Ambigu\n",
            "target": "(A)"
          },
          {
            "input": "Dans les phrases suivantes, expliquez l'antécédent du pronom (à quoi le pronom\nfait référence), ou indiquez que c'est ambigu.\n\nPhrase : Bailey prévoit de rencontrer le directeur dans son bureau.\n\nOptions :\n\n(A) Ce sera le bureau de Bailey\n\n(B) Ce sera le bureau du directeur\n\n(C) Ambigu\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_expressions_booléennes": {
      "task": "leaderboard_bbh_expressions_booléennes",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "expressions_booléennes",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "Incorrect",
        "Vrai"
      ],
      "description": "Évaluez le résultat d'une expression booléenne aléatoire.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "pas ( ( pas pas Vrai ) ) est",
            "target": "Incorrect"
          },
          {
            "input": "Vrai et Faux et pas Vrai et Vrai est",
            "target": "Incorrect"
          },
          {
            "input": "pas pas ( pas ( Faux ) ) est",
            "target": "Vrai"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_formes_géométriques": {
      "task": "leaderboard_bbh_formes_géométriques",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "formes_géométriques",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)",
        "(G)",
        "(H)",
        "(I)",
        "(J)",
        "(K)"
      ],
      "description": "Nommez des formes géométriques à partir de leurs chemins SVG.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Cet élément de chemin SVG <path d=\"M 31.00,73.00 L 32.00,59.00 L 44.00,50.00 L 49.00,41.00 L 64.00,37.00 L 71.00,55.00 L 64.00,76.00 L 52.00,61.00 L 31.00,73.00\"/> dessine un(e)\nOptions :\n(A) cercle\n(B) heptagone\n(C) hexagone\n(D) cerf-volant\n(E) ligne\n(F) octogone\n(G) pentagone\n(H) rectangle\n(I) secteur\n(J) triangle",
            "target": "(F)"
          },
          {
            "input": "Cet élément de chemin SVG <path d=\"M 14.19,26.04 L 51.43,39.21 L 58.44,36.69 L 56.63,30.17 L 48.53,26.66 L 14.19,26.04\"/> dessine un(e)\nOptions :\n(A) cercle\n(B) heptagone\n(C) hexagone\n(D) cerf-volant\n(E) ligne\n(F) octogone\n(G) pentagone\n(H) rectangle\n(I) secteur\n(J) triangle",
            "target": "(G)"
          },
          {
            "input": "Cet élément de chemin SVG <path d=\"M 41.00,43.00 L 37.00,34.00 L 41.00,33.00 L 45.00,34.00 L 41.00,43.00\"/> dessine un(e)\nOptions :\n(A) cercle\n(B) heptagone\n(C) hexagone\n(D) cerf-volant\n(E) ligne\n(F) octogone\n(G) pentagone\n(H) rectangle\n(I) secteur\n(J) triangle",
            "target": "(D)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_hyperbate": {
      "task": "leaderboard_bbh_hyperbate",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "hyperbate",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)"
      ],
      "description": "Ordonnez correctement les adjectifs dans des phrases en anglais.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Quelle phrase a le bon ordre des adjectifs :\n\nOptions :\n\n(A) bateau en caoutchouc terrible\n\n(B) terrible bateau en caoutchouc\n",
            "target": "(B)"
          },
          {
            "input": "Quelle phrase a le bon ordre des adjectifs :\n\nOptions :\n\n(A) petit bateau d'exercice brésilien répugnant\n\n(B) brésilien répugnant bateau d'exercice petit\n",
            "target": "(A)"
          },
          {
            "input": "Quelle phrase a le bon ordre des adjectifs :\n\nOptions :\n\n(A) chaussure carrée merveilleuse bleu or\n\n(B) merveilleuse chaussure carrée bleu or\n",
            "target": "(B)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_jugement_causal": {
      "task": "leaderboard_bbh_jugement_causal",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "jugement_causal",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "Oui",
        "Non"
      ],
      "description": "Répondez aux questions sur l'attribution causale.",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Comment une personne typique répondrait-elle à chacune des questions suivantes sur la causalité ?\n\nFrank T. avait un conflit de longue date avec son voisin à propos d'un morceau\nde terrain et un jour, il a décidé de tirer sur son voisin dans le corps.\nFrank T. n'avait aucune expérience avec les armes à feu, sa main a glissé sur\nle canon de l'arme, et le tir est parti dans une direction imprévue.\nNéanmoins, la balle a ricoché sur un gros rocher à plusieurs mètres de là et\na touché le corps du voisin, causant des blessures importantes. Frank T. a-t-il\nintentionnellement tiré sur son voisin dans le corps ?\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Non"
          },
          {
            "input": "Comment une personne typique répondrait-elle à chacune des questions suivantes sur la causalité ?\n\nSuzy et Billy travaillent sur un projet très important pour la sécurité de notre\nnation. Leur patron leur dit à tous les deux : \"Assurez-vous d'être ici\nexactement à 9h00. Il est absolument essentiel que vous arriviez à cette heure.\"\nBilly et Suzy arrivent tous les deux à 9h00. Il se trouve qu'un détecteur de\nmouvement avait été installé dans la pièce où ils sont arrivés. Le détecteur de\nmouvement était configuré pour se déclencher si au moins une personne apparaissait\ndans la pièce en même temps. Le détecteur de mouvement s'est donc déclenché.\nBilly a-t-il causé le déclenchement du détecteur de mouvement ?\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Oui"
          },
          {
            "input": "Comment une personne typique répondrait-elle à chacune des questions suivantes sur la causalité ?\n\nGeorge et sa sœur Lena se retrouvent chez leurs parents pour Thanksgiving.\nTandis que George vient d'entrer en faculté de médecine, Lena est mécontente\nde son mariage et a récemment perdu son emploi. Au cours de la journée, George\net Lena se disputent à plusieurs reprises. Plus tard dans l'après-midi, ils\njouent à un jeu de fléchettes. Ils se partagent les deux premiers matchs, et\nle troisième est serré jusqu'à la fin. Le gagnant sera déterminé par le dernier\ntir de George. S'il vise une zone de points élevés, il gagne ; s'il vise une\nzone de points faibles, Lena gagne. George pense au moment difficile que Lena\ntraverse et il veut vraiment la laisser gagner. Il vise la zone de points\nfaibles. Il prépare son tir, et la fléchette atterrit dans la zone de points\nfaibles. Après son tir, Lena gagne le jeu et est très heureuse. George a-t-il\nintentionnellement visé la zone de points faibles ?\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Oui"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_naviguer": {
      "task": "leaderboard_bbh_naviguer",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "naviguer",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "Oui",
        "Non"
      ],
      "description": "Étant donné une série d'instructions de navigation, déterminez si l'on revient au point de départ.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Si vous suivez ces instructions, revenez-vous au point de départ ?\nTournez à gauche. Faites demi-tour. Tournez à gauche. Faites 7 pas. Faites 2 pas. Faites 4 pas.\nFaites 8 pas.\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Non"
          },
          {
            "input": "Si vous suivez ces instructions, revenez-vous au point de départ ?\nFaites demi-tour. Faites 1 pas. Faites 6 pas. Faites demi-tour. Faites 6 pas. Faites 9 pas.\nFaites 1 pas.\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Non"
          },
          {
            "input": "Si vous suivez ces instructions, revenez-vous au point de départ ?\nFaites toujours face vers l'avant. Faites 2 pas à droite. Faites 9 pas à gauche. Faites 7 pas à droite.\n\nOptions :\n\n- Oui\n\n- Non\n",
            "target": "Oui"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_pingouins_sur_une_table": {
      "task": "leaderboard_bbh_pingouins_sur_une_table",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "pingouins_sur_une_table",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)"
      ],
      "description": "Répondez aux questions sur une table de pingouins et leurs attributs.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Voici une table où la première ligne est un en-tête et chaque ligne suivante\nreprésente un pingouin : nom, âge, taille (cm), poids (kg)\n\nLouis, 7, 50, 11\nBernard, 5, 80, 13\nVincent, 9, 60, 11\nGwen, 8, 70, 15\n\nPar exemple : l'âge de Louis est 7 ans, le poids de Gwen est de 15 kg, la taille de Bernard est de 80 cm. \nNous ajoutons maintenant un pingouin à la table :\n\nJames, 12, 90, 12\n\nCombien de pingouins ont moins de 8 ans ?\n\nOptions :\n\n(A) 1\n\n(B) 2\n\n(C) 3\n\n(D) 4\n\n(E) 5\n",
            "target": "(B)"
          },
          {
            "input": "Voici une table où la première ligne est un en-tête et chaque ligne suivante\nreprésente un pingouin : nom, âge, taille (cm), poids (kg)\n\nLouis, 7, 50, 11\nBernard, 5, 80, 13\nVincent, 9, 60, 11\nGwen, 8, 70, 15\n\nPar exemple : l'âge de Louis est de 7 ans, le poids de Gwen est de 15 kg, la taille de Bernard est de 80 cm. \nQuel est le pingouin le plus jeune ?\n\nOptions :\n\n(A) Louis\n\n(B) Bernard\n\n(C) Vincent\n\n(D) Gwen\n\n(E) James\n",
            "target": "(B)"
          },
          {
            "input": "Voici une table où la première ligne est un en-tête et chaque ligne suivante\nreprésente un pingouin : nom, âge, taille (cm), poids (kg)\n\nLouis, 7, 50, 11\nBernard, 5, 80, 13\nVincent, 9, 60, 11\nGwen, 8, 70, 15\n\nPar exemple : l'âge de Louis est de 7 ans, le poids de Gwen est de 15 kg, la taille de Bernard est de 80 cm. \nQuel est le nom du deuxième pingouin trié par ordre alphabétique ?\n\nOptions :\n\n(A) Louis\n\n(B) Bernard\n\n(C) Vincent\n\n(D) Gwen\n\n(E) James\n",
            "target": "(D)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": {
      "task": "leaderboard_bbh_raisonnement_sur_les_objets_colorés",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "raisonnement_sur_les_objets_colorés",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)",
        "(G)",
        "(H)",
        "(I)",
        "(J)",
        "(K)",
        "(L)",
        "(M)",
        "(N)",
        "(O)",
        "(P)",
        "(Q)",
        "(R)"
      ],
      "description": "Répondez à des questions extrêmement simples sur les couleurs des objets sur une surface.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Sur la table de chevet, il y a un crayon rouge, une tasse violette, un porte-clés\nbordeaux, un ours en peluche fuchsia, une assiette noire et une balle anti-stress bleue.\nDe quelle couleur est la balle anti-stress ?\n\nOptions :\n\n(A) rouge\n\n(B) orange\n\n(C) jaune\n\n(D) vert\n\n(E) bleu\n\n(F) marron\n\n(G) magenta\n\n(H) fuchsia\n\n(I) mauve\n\n(J) sarcelle\n\n(K) turquoise\n\n(L) bordeaux\n\n(M) argent\n\n(N) or\n\n(O) noir\n\n(P) gris\n\n(Q) violet\n\n(R) rose\n",
            "target": "(E)"
          },
          {
            "input": "Sur la table, vous voyez un ensemble d'objets disposés en ligne : un trombone\nviolet, une balle anti-stress rose, un porte-clés marron, un chargeur scrunchiephone\nvert, un hand spinner mauve et un stylo bordeaux. Quelle est la couleur de l'objet\ndirectement à droite de la balle anti-stress ?\n\nOptions :\n\n(A) rouge\n\n(B) orange\n\n(C) jaune\n\n(D) vert\n\n(E) bleu\n\n(F) marron\n\n(G) magenta\n\n(H) fuchsia\n\n(I) mauve\n\n(J) sarcelle\n\n(K) turquoise\n\n(L) bordeaux\n\n(M) argent\n\n(N) or\n\n(O) noir\n\n(P) gris\n\n(Q) violet\n\n(R) rose\n",
            "target": "(F)"
          },
          {
            "input": "Sur la table de chevet, vous voyez les objets suivants disposés en ligne : une assiette\nsarcelle, un porte-clés bordeaux, un chargeur scrunchiephone jaune, une tasse orange,\nun carnet rose et une tasse grise. Combien d'objets non-orange voyez-vous à gauche\nde l'objet sarcelle ?\n\nOptions :\n\n(A) zéro\n\n(B) un\n\n(C) deux\n\n(D) trois\n\n(E) quatre\n\n(F) cinq\n\n(G) six\n",
            "target": "(A)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_recommandation_de_film": {
      "task": "leaderboard_bbh_recommandation_de_film",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "recommandation_de_film",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)"
      ],
      "description": "Recommandez des films similaires à la liste de films donnée.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Trouvez un film similaire à Star Wars Episode IV - Un nouvel espoir, Indiana\nJones et la dernière croisade, Star Wars Episode V - L'Empire contre-attaque,\nThe Big Lebowski :\n\nOptions :\n\n(A) Tetsuo\n\n(B) the Ironman\n\n(C) The Princess Bride\n\n(D) The Barkley Marathons The Race That Eats Its Young\n\n(E) Bug\n",
            "target": "(C)"
          },
          {
            "input": "Trouvez un film similaire à Twister, Le Silence des agneaux, Independence\nDay, Braveheart :\n\nOptions :\n\n(A) Ils tirent sur les chevaux\n\n(B) N'est-ce pas\n\n(C) Forrest Gump\n\n(D) The Salton Sea\n\n(E) Extreme Days\n",
            "target": "(C)"
          },
          {
            "input": "Trouvez un film similaire à Minority Report, Total Recall, Vice-versa,\nForrest Gump :\n\nOptions :\n\n(A) Phénomènes\n\n(B) Lilting\n\n(C) Catwoman\n\n(D) Edge of Tomorrow\n",
            "target": "(D)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_sarcasmes": {
      "task": "leaderboard_bbh_sarcasmes",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "sarcasmes",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)"
      ],
      "description": "Déterminez laquelle des deux phrases est sarcastique. Selon le dictionnaire de l'Université de Cambridge,  le sarcasme est \"l'utilisation de remarques qui signifient clairement le contraire de ce qu'elles disent,  faites pour blesser les sentiments de quelqu'un ou pour critiquer quelque chose de manière humoristique.\"  Les phrases sarcastiques contiennent souvent des énonciations satiriques ou ironiques,  des hyperboles, des remarques ambivalentes ou spirituelles.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Quelle déclaration est sarcastique ?\n\nOptions :\n\n(A) Oui, parce que s'intéresser à des sujets et faire des recherches actives est une énorme perte de temps\n\n(B) Oui, parce que s'intéresser à des sujets et faire des recherches actives est une grande affaire\n",
            "target": "(A)"
          },
          {
            "input": "Quelle déclaration est sarcastique ?\n\nOptions :\n\n(A) Personne ne va être en désaccord avec vous là-dessus. Éviter les attaques ad hominem aide vraiment votre cause\n\n(B) Personne ne va être en désaccord avec vous là-dessus. Les attaques ad hominem aident vraiment votre cause\n",
            "target": "(B)"
          },
          {
            "input": "Quelle déclaration est sarcastique ?\n\nOptions :\n\n(A) Cohérence dans les sanctions de la ligue ? Qu'est-ce que vous pensez que cela doit être, de la politique ?\n\n(B) Cohérence dans les sanctions de la ligue ? Qu'est-ce que vous pensez que cela doit être, de la morale ?\n",
            "target": "(A)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_sophismes_formels": {
      "task": "leaderboard_bbh_sophismes_formels",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "sophismes_formels",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "valide",
        "invalidee"
      ],
      "description": "Distinguez les arguments déductivement valides des sophismes formels.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "\"Il n'est pas toujours facile de voir qui est lié à qui -- et de quelle manière.\nL'argument suivant porte sur cette question : Pour commencer, Lesley est un\nami proche de Fernando. De plus, être un ami proche de Fernando ou un camarade\nde classe de Lowell est suffisant pour être arrière-grand-père de Leroy. Il\ns'ensuit que Lesley est arrière-grand-père de Leroy.\"\n\nL'argument, étant donné les prémisses explicitement énoncées, est-il déductivement\nvalide ou invalidee ?\n\nOptions :\n\n- valide\n\n- invalidee\n",
            "target": "valide"
          },
          {
            "input": "\"Il n'est pas toujours facile de voir qui est lié à qui -- et de quelle manière.\nL'argument suivant porte sur cette question : Quiconque n'est pas arrière-grand-père\nde Clyde est le demi-frère de Brian. Être un ancêtre de Dana est suffisant\npour ne pas être arrière-grand-père de Clyde. Nous pouvons conclure : Tout\nle monde qui est un ancêtre de Dana est aussi le demi-frère de Brian.\"\n\nL'argument, étant donné les prémisses explicitement énoncées, est-il déductivement\nvalide ou invalidee ?\n\nOptions :\n\n- valide\n\n- invalidee\n",
            "target": "valide"
          },
          {
            "input": "\"Il n'est pas toujours facile de comprendre qui consomme quels produits.\nL'argument suivant porte sur cette question : Tout utilisateur peu fréquent\nde shampoing Paul Mitchell est soit un consommateur rare de shampoing Nioxin,\nsoit un acheteur fidèle de savon Caress, ou les deux. Aucun consommateur régulier\nde savon Lush n'est un consommateur rare de shampoing Nioxin et, en même temps,\nun acheteur fidèle de savon Caress. Il s'ensuit que quiconque est un utilisateur\npeu fréquent de shampoing Paul Mitchell n'est pas un consommateur régulier\nde savon Lush.\"\n\nL'argument, étant donné les prémisses explicitement énoncées, est-il déductivement\nvalide ou invalidee ?\n\nOptions :\n\n- valide\n\n- invalidee\n",
            "target": "invalidee"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": {
      "task": "leaderboard_bbh_suivi_objets_mélangés_cinq_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "suivi_objets_mélangés_cinq_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)"
      ],
      "description": "Une tâche qui nécessite de déterminer les positions finales d'un ensemble d'objets, étant donné leurs positions initiales et une description d'une séquence d'échanges.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle jaune, Bob a une balle bleue et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Claire et Alice échangent leurs balles. Ensuite, Alice et Bob échangent leurs balles. Enfin, Claire et Bob échangent leurs balles. À la fin du jeu, Bob a la\n\nOptions :\n\n(A) balle jaune\n\n(B) balle bleue\n\n(C) balle rose\n",
            "target": "(A)"
          },
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle blanche, Bob a une balle violette et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Bob et Alice échangent leurs balles. Ensuite, Bob et Claire échangent leurs balles. Enfin, Bob et Alice échangent leurs balles. À la fin du jeu, Alice a la\n\nOptions :\n\n(A) balle blanche\n\n(B) balle violette\n\n(C) balle rose\n",
            "target": "(C)"
          },
          {
            "input": "Alice, Bob et Claire sont des danseurs à une danse carrée. Au début d'une chanson, ils ont chacun un partenaire : Alice danse avec Lola, Bob danse avec Rodrigo, et Claire danse avec Patrick.\n\nPendant la chanson, les danseurs changent souvent de partenaires. D'abord, Alice et Bob échangent leurs partenaires. Ensuite, Claire et Bob échangent leurs partenaires. Enfin, Bob et Alice échangent leurs partenaires. À la fin de la danse, Alice danse avec\n\nOptions :\n\n(A) Lola\n\n(B) Rodrigo\n\n(C) Patrick\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": {
      "task": "leaderboard_bbh_suivi_objets_mélangés_sept_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "suivi_objets_mélangés_sept_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)",
        "(E)",
        "(F)",
        "(G)"
      ],
      "description": "Une tâche qui nécessite de déterminer les positions finales d'un ensemble d'objets, étant donné leurs positions initiales et une description d'une séquence d'échanges.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle jaune, Bob a une balle bleue et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Claire et Alice échangent leurs balles. Ensuite, Alice et Bob échangent leurs balles. Enfin, Claire et Bob échangent leurs balles. À la fin du jeu, Bob a la\n\nOptions :\n\n(A) balle jaune\n\n(B) balle bleue\n\n(C) balle rose\n",
            "target": "(A)"
          },
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle blanche, Bob a une balle violette et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Bob et Alice échangent leurs balles. Ensuite, Bob et Claire échangent leurs balles. Enfin, Bob et Alice échangent leurs balles. À la fin du jeu, Alice a la\n\nOptions :\n\n(A) balle blanche\n\n(B) balle violette\n\n(C) balle rose\n",
            "target": "(C)"
          },
          {
            "input": "Alice, Bob et Claire sont des danseurs à une danse carrée. Au début d'une chanson, ils ont chacun un partenaire : Alice danse avec Lola, Bob danse avec Rodrigo, et Claire danse avec Patrick.\n\nPendant la chanson, les danseurs changent souvent de partenaires. D'abord, Alice et Bob échangent leurs partenaires. Ensuite, Claire et Bob échangent leurs partenaires. Enfin, Bob et Alice échangent leurs partenaires. À la fin de la danse, Alice danse avec\n\nOptions :\n\n(A) Lola\n\n(B) Rodrigo\n\n(C) Patrick\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": {
      "task": "leaderboard_bbh_suivi_objets_mélangés_trois_objets",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "suivi_objets_mélangés_trois_objets",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)"
      ],
      "description": "Une tâche qui nécessite de déterminer les positions finales d'un ensemble d'objets, étant donné leurs positions initiales et une description d'une séquence d'échanges.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle jaune, Bob a une balle bleue et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Claire et Alice échangent leurs balles. Ensuite, Alice et Bob échangent leurs balles. Enfin, Claire et Bob échangent leurs balles. À la fin du jeu, Bob a la\n\nOptions :\n\n(A) balle jaune\n\n(B) balle bleue\n\n(C) balle rose\n",
            "target": "(A)"
          },
          {
            "input": "Alice, Bob et Claire jouent à un jeu. Au début du jeu, ils tiennent chacun une balle : Alice a une balle blanche, Bob a une balle violette et Claire a une balle rose.\n\nAu fur et à mesure que le jeu progresse, des paires de joueurs échangent leurs balles. D'abord, Bob et Alice échangent leurs balles. Ensuite, Bob et Claire échangent leurs balles. Enfin, Bob et Alice échangent leurs balles. À la fin du jeu, Alice a la\n\nOptions :\n\n(A) balle blanche\n\n(B) balle violette\n\n(C) balle rose\n",
            "target": "(C)"
          },
          {
            "input": "Alice, Bob et Claire sont des danseurs à une danse carrée. Au début d'une chanson, ils ont chacun un partenaire : Alice danse avec Lola, Bob danse avec Rodrigo, et Claire danse avec Patrick.\n\nPendant la chanson, les danseurs changent souvent de partenaires. D'abord, Alice et Bob échangent leurs partenaires. Ensuite, Claire et Bob échangent leurs partenaires. Enfin, Bob et Alice échangent leurs partenaires. À la fin de la danse, Alice danse avec\n\nOptions :\n\n(A) Lola\n\n(B) Rodrigo\n\n(C) Patrick\n",
            "target": "(C)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_séquences_temporelles": {
      "task": "leaderboard_bbh_séquences_temporelles",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "séquences_temporelles",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)"
      ],
      "description": "Description de la tâche : Répondez aux questions sur les moments où certains événements ont pu se produire.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Aujourd'hui, Emily est allée au musée. Entre quelles heures aurait-elle pu y aller ?\n\nNous savons que :\n\nEmily s'est réveillée à 13h.\n\nElizabeth a vu Emily lire à la bibliothèque de 14h à 16h.\n\nJessica a vu Emily regarder un film au cinéma de 16h à 17h.\n\nLeslie a vu Emily attendre à l'aéroport de 17h à 18h.\n\nWilliam a vu Emily acheter des vêtements au centre commercial de 18h à 19h.\n\nLe musée était fermé après 19h.\n\nEntre quelles heures Emily aurait-elle pu aller au musée ?\n\nOptions :\n\n(A) 13h à 14h\n\n(B) 18h à 19h\n\n(C) 17h à 18h\n\n(D) 14h à 16h\n",
            "target": "(A)"
          },
          {
            "input": "Aujourd'hui, Elizabeth est allée au parc d'attractions. Entre quelles heures aurait-elle pu y aller ?\n\nNous savons que :\n\nElizabeth s'est réveillée à 7h.\n\nDavid a vu Elizabeth réparer son ordinateur au magasin d'électronique de 13h à 14h.\n\nSarah a vu Elizabeth jouer au tennis sur le court de tennis de 14h à 15h.\n\nSusan a vu Elizabeth marcher vers la Statue de la Liberté de 15h à 18h.\n\nAndrew a vu Elizabeth prendre des photos près de la tour Eiffel de 18h à 21h.\n\nEmily a vu Elizabeth prendre un café au café de 21h à 22h.\n\nLe parc d'attractions était fermé après 22h.\n\nEntre quelles heures Elizabeth aurait-elle pu aller au parc d'attractions ?\n\nOptions :\n\n(A) 7h à 13h\n\n(B) 21h à 22h\n\n(C) 13h à 14h\n\n(D) 15h à 18h\n",
            "target": "(A)"
          },
          {
            "input": "Aujourd'hui, Tiffany est allée à la plage. Entre quelles heures aurait-elle pu y aller ?\n\nNous savons que :\n\nTiffany s'est réveillée à 5h.\n\nBetty a vu Tiffany prendre un café au café de 5h à 6h.\n\nJessica a vu Tiffany travailler au bureau de 6h à 9h.\n\nJohn a vu Tiffany s'étirer au studio de yoga de 9h à 12h.\n\nSean a vu Tiffany s'asseoir sur un toit de 12h à 14h.\n\nSarah a vu Tiffany jouer au tennis sur le court de tennis de 14h à 15h.\n\nLa plage était fermée après 16h.\n\nEntre quelles heures Tiffany aurait-elle pu aller à la plage ?\n\nOptions :\n\n(A) 9h à 12h\n\n(B) 12h à 14h\n\n(C) 5h à 6h\n\n(D) 15h à 16h\n",
            "target": "(D)"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_bbh_toile_de_mensonges": {
      "task": "leaderboard_bbh_toile_de_mensonges",
      "dataset_path": "le-leadboard/bbh-fr",
      "dataset_name": "toile_de_mensonges",
      "test_split": "test",
      "doc_to_text": "Q: {{input}}\nA:",
      "doc_to_target": "{{target}}",
      "doc_to_choice": [
        "Oui",
        "Non"
      ],
      "description": "Évaluez une fonction booléenne aléatoire exprimée sous forme de problème de mots.\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": [
          {
            "input": "Question : Fidel dit la vérité. Jerry dit que Fidel dit la vérité. Vina\ndit que Jerry dit la vérité. Millicent dit que Vina ment. Raymond dit que Millicent\nment. Raymond dit-il la vérité ?\n",
            "target": "Oui"
          },
          {
            "input": "Question : Kristian ment. Millie dit que Kristian ment. Maybelle dit que Millie\ndit la vérité. Fidel dit que Maybelle ment. Leda dit que Fidel ment. Leda dit-elle la vérité ?\n",
            "target": "Oui"
          },
          {
            "input": "Question : Kristian dit la vérité. Michaela dit que Kristian ment. Raymond\ndit que Michaela dit la vérité. Osvaldo dit que Raymond dit la vérité. Jamey dit\nqu'Osvaldo dit la vérité. Jamey dit-il la vérité ?\n",
            "target": "Non"
          }
        ]
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.0
      }
    },
    "leaderboard_gpqa_diamond_fr": {
      "task": "leaderboard_gpqa_diamond_fr",
      "dataset_path": "le-leadboard/gpqa-fr",
      "dataset_name": "gpqa_diamond",
      "training_split": "train",
      "validation_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc):\n        choices = [\n            preprocess(doc[\"Incorrect Answer 1\"]),\n            preprocess(doc[\"Incorrect Answer 2\"]),\n            preprocess(doc[\"Incorrect Answer 3\"]),\n            preprocess(doc[\"Correct Answer\"]),\n        ]\n\n        random.shuffle(choices)\n        correct_answer_index = choices.index(preprocess(doc[\"Correct Answer\"]))\n\n        out_doc = {\n            \"choice1\": choices[0],\n            \"choice2\": choices[1],\n            \"choice3\": choices[2],\n            \"choice4\": choices[3],\n            \"answer\": f\"({chr(65 + correct_answer_index)})\",\n        }\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "Quelle est la réponse correcte à cette question : {{problem}}\nChoix :\n(A) {{choice1}}\n(B) {{choice2}}\n(C) {{choice3}}\n(D) {{choice4}}\nRéponse : ",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_gpqa_extended_fr": {
      "task": "leaderboard_gpqa_extended_fr",
      "dataset_path": "le-leadboard/gpqa-fr",
      "dataset_name": "gpqa_extended",
      "training_split": "train",
      "validation_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc):\n        choices = [\n            preprocess(doc[\"Incorrect Answer 1\"]),\n            preprocess(doc[\"Incorrect Answer 2\"]),\n            preprocess(doc[\"Incorrect Answer 3\"]),\n            preprocess(doc[\"Correct Answer\"]),\n        ]\n\n        random.shuffle(choices)\n        correct_answer_index = choices.index(preprocess(doc[\"Correct Answer\"]))\n\n        out_doc = {\n            \"choice1\": choices[0],\n            \"choice2\": choices[1],\n            \"choice3\": choices[2],\n            \"choice4\": choices[3],\n            \"answer\": f\"({chr(65 + correct_answer_index)})\",\n        }\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "Quelle est la réponse correcte à cette question : {{problem}}\nChoix :\n(A) {{choice1}}\n(B) {{choice2}}\n(C) {{choice3}}\n(D) {{choice4}}\nRéponse : ",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_gpqa_main_fr": {
      "task": "leaderboard_gpqa_main_fr",
      "dataset_path": "le-leadboard/gpqa-fr",
      "dataset_name": "gpqa_main",
      "training_split": "train",
      "validation_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc):\n        choices = [\n            preprocess(doc[\"Incorrect Answer 1\"]),\n            preprocess(doc[\"Incorrect Answer 2\"]),\n            preprocess(doc[\"Incorrect Answer 3\"]),\n            preprocess(doc[\"Correct Answer\"]),\n        ]\n\n        random.shuffle(choices)\n        correct_answer_index = choices.index(preprocess(doc[\"Correct Answer\"]))\n\n        out_doc = {\n            \"choice1\": choices[0],\n            \"choice2\": choices[1],\n            \"choice3\": choices[2],\n            \"choice4\": choices[3],\n            \"answer\": f\"({chr(65 + correct_answer_index)})\",\n        }\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "Quelle est la réponse correcte à cette question : {{problem}}\nChoix :\n(A) {{choice1}}\n(B) {{choice2}}\n(C) {{choice3}}\n(D) {{choice4}}\nRéponse : ",
      "doc_to_target": "answer",
      "doc_to_choice": [
        "(A)",
        "(B)",
        "(C)",
        "(D)"
      ],
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_ifeval_fr": {
      "task": "leaderboard_ifeval_fr",
      "dataset_path": "le-leadboard/IFEval-fr",
      "test_split": "train",
      "doc_to_text": "prompt",
      "doc_to_target": 0,
      "process_results": "def process_results(doc, results):\n    inp = InputExample(\n        key=0,\n        instruction_id_list=doc[\"categories\"],\n        prompt=doc[\"prompt\"],\n        kwargs=doc[\"kwargs\"],\n    )\n    response = results[0]\n    out_strict = test_instruction_following_strict(inp, response)\n    out_loose = test_instruction_following_loose(inp, response)\n\n    return {\n        \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n        \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n        \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n        \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n    }\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "prompt_level_strict_acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "inst_level_strict_acc",
          "aggregation": "def agg_inst_level_acc(items):\n    flat_items = [item for sublist in items for item in sublist]\n    inst_level_acc = sum(flat_items) / len(flat_items)\n    return inst_level_acc\n",
          "higher_is_better": true
        },
        {
          "metric": "prompt_level_loose_acc",
          "aggregation": "mean",
          "higher_is_better": true
        },
        {
          "metric": "inst_level_loose_acc",
          "aggregation": "def agg_inst_level_acc(items):\n    flat_items = [item for sublist in items for item in sublist]\n    inst_level_acc = sum(flat_items) / len(flat_items)\n    return inst_level_acc\n",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1280
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 2.0
      }
    },
    "leaderboard_math_algebra_hard_fr": {
      "task": "leaderboard_math_algebra_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "algebra",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e65b431870>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_math_counting_and_prob_hard_fr": {
      "task": "leaderboard_math_counting_and_prob_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "counting_and_probability",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e6587cfc70>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_math_geometry_hard_fr": {
      "task": "leaderboard_math_geometry_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "geometry",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e6587ce170>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_math_num_theory_hard_fr": {
      "task": "leaderboard_math_num_theory_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "number_theory",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e6587b9cf0>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_math_prealgebra_hard_fr": {
      "task": "leaderboard_math_prealgebra_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "prealgebra",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e6587cc040>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_math_precalculus_hard_fr": {
      "task": "leaderboard_math_precalculus_hard_fr",
      "dataset_path": "le-leadboard/MATH_LVL5_fr",
      "dataset_name": "precalculus",
      "dataset_kwargs": {
        "trust_remote_code": true
      },
      "training_split": "train",
      "test_split": "train",
      "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n    def _process_doc(doc: dict) -> dict:\n        out_doc = {\n            \"problem\": doc[\"problem\"],\n            \"solution\": doc[\"solution\"],\n            \"answer\": normalize_final_answer(\n                remove_boxed(last_boxed_only_string(doc[\"solution\"]))\n            ),\n        }\n        if getattr(doc, \"few_shot\", None) is not None:\n            out_doc[\"few_shot\"] = True\n        return out_doc\n\n    return dataset.map(_process_doc)\n",
      "doc_to_text": "def doc_to_text(doc: dict) -> str:\n    return (\n        \"Problème:\\n\"\n        + doc[\"problem\"]\n        + \"\\n\\n\"\n        + \"Veuillez terminer votre solution en écrivant 'Réponse finale : ### [votre réponse]'.\\n\"\n        + \"Solution:\\n\"\n    )\n",
      "doc_to_target": "{{answer if few_shot is undefined else solution}}",
      "process_results": "def process_results(doc: dict, results: List[str]) -> Dict[str, int]:\n    candidates = results[0]\n\n    unnormalized_answer = get_unnormalized_answer(candidates)\n    answer = normalize_final_answer(unnormalized_answer)    \n    if is_equiv(answer, doc[\"answer\"]):\n        retval = 1\n    else:\n        retval = 0\n\n    results = {\n        \"exact_match\": retval,\n    }\n    return results\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "samples": "<function list_fewshot_samples at 0x70e6587b8af0>"
      },
      "num_fewshot": 4,
      "metric_list": [
        {
          "metric": "exact_match",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "until": [
          "Problème:"
        ],
        "do_sample": false,
        "temperature": 0.0,
        "max_gen_toks": 1024
      },
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_mmlu_fr": {
      "task": "leaderboard_mmlu_fr",
      "dataset_path": "le-leadboard/MMMLU-fr",
      "test_split": "test",
      "fewshot_split": "test",
      "doc_to_text": "def doc_to_text(doc):\n    doc_to_text = f\"{doc['Question']}\\n\"\n    options = [doc['A'],doc['B'],doc['C'],doc['D']]\n    for i in range(len(options)):\n        doc_to_text += f\"{string.ascii_uppercase[i]}. {options[i]}\\n\"\n\n    doc_to_text += \"Réponse:\"\n    return doc_to_text\n",
      "doc_to_target": "Answer",
      "doc_to_choice": "def doc_to_choice(doc):\n    options = [doc['A'],doc['B'],doc['C'],doc['D']]\n    return [string.ascii_uppercase[i] for i in range(len(options))]\n",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 5,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 0.1
      }
    },
    "leaderboard_musr_murder_mysteries_fr": {
      "task": "leaderboard_musr_murder_mysteries_fr",
      "dataset_path": "le-leadboard/musr-fr",
      "test_split": "murder_mysteries",
      "doc_to_text": "def doc_to_text(doc):\n    \"\"\"\n    Convert a doc to text.\n    \"\"\"\n    choices = \"\"\n    for i, choice in enumerate(doc[\"choices\"]):\n        choices += f\"{i+1} - {choice}\\n\"\n\n    text = DOC_TO_TEXT.format(\n        narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n    )\n\n    return text\n",
      "doc_to_target": "{{answer_choice}}",
      "doc_to_choice": "{{choices}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_musr_object_placements_fr": {
      "task": "leaderboard_musr_object_placements_fr",
      "dataset_path": "le-leadboard/musr-fr",
      "test_split": "object_placements",
      "doc_to_text": "def doc_to_text(doc):\n    \"\"\"\n    Convert a doc to text.\n    \"\"\"\n    choices = \"\"\n    for i, choice in enumerate(doc[\"choices\"]):\n        choices += f\"{i+1} - {choice}\\n\"\n\n    text = DOC_TO_TEXT.format(\n        narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n    )\n\n    return text\n",
      "doc_to_target": "{{answer_choice}}",
      "doc_to_choice": "{{choices}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "leaderboard_musr_team_allocation_fr": {
      "task": "leaderboard_musr_team_allocation_fr",
      "dataset_path": "le-leadboard/musr-fr",
      "test_split": "team_allocation",
      "doc_to_text": "def doc_to_text(doc):\n    \"\"\"\n    Convert a doc to text.\n    \"\"\"\n    choices = \"\"\n    for i, choice in enumerate(doc[\"choices\"]):\n        choices += f\"{i+1} - {choice}\\n\"\n\n    text = DOC_TO_TEXT.format(\n        narrative=doc[\"narrative\"], question=doc[\"question\"], choices=choices\n    )\n\n    return text\n",
      "doc_to_target": "{{answer_choice}}",
      "doc_to_choice": "{{choices}}",
      "description": "",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "num_fewshot": 0,
      "metric_list": [
        {
          "metric": "acc_norm",
          "aggregation": "mean",
          "higher_is_better": true
        }
      ],
      "output_type": "multiple_choice",
      "repeats": 1,
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "leaderboard_bbh_compréhension_de_la_date": 0.0,
    "leaderboard_bbh_compréhension_des_sports": 0.0,
    "leaderboard_bbh_comptage_d_objets": 0.0,
    "leaderboard_bbh_déduction_logique_cinq_objets": 0.0,
    "leaderboard_bbh_déduction_logique_sept_objets": 0.0,
    "leaderboard_bbh_déduction_logique_trois_objets": 0.0,
    "leaderboard_bbh_désambiguïsation_qa": 0.0,
    "leaderboard_bbh_expressions_booléennes": 0.0,
    "leaderboard_bbh_formes_géométriques": 0.0,
    "leaderboard_bbh_hyperbate": 0.0,
    "leaderboard_bbh_jugement_causal": 0.0,
    "leaderboard_bbh_naviguer": 0.0,
    "leaderboard_bbh_pingouins_sur_une_table": 0.0,
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": 0.0,
    "leaderboard_bbh_recommandation_de_film": 0.0,
    "leaderboard_bbh_sarcasmes": 0.0,
    "leaderboard_bbh_sophismes_formels": 0.0,
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": 0.0,
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": 0.0,
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": 0.0,
    "leaderboard_bbh_séquences_temporelles": 0.0,
    "leaderboard_bbh_toile_de_mensonges": 0.0,
    "leaderboard_gpqa_diamond_fr": 1.0,
    "leaderboard_gpqa_extended_fr": 1.0,
    "leaderboard_gpqa_main_fr": 1.0,
    "leaderboard_ifeval_fr": 2.0,
    "leaderboard_math_algebra_hard_fr": 1.0,
    "leaderboard_math_counting_and_prob_hard_fr": 1.0,
    "leaderboard_math_geometry_hard_fr": 1.0,
    "leaderboard_math_num_theory_hard_fr": 1.0,
    "leaderboard_math_prealgebra_hard_fr": 1.0,
    "leaderboard_math_precalculus_hard_fr": 1.0,
    "leaderboard_mmlu_fr": 0.1,
    "leaderboard_musr_murder_mysteries_fr": 1.0,
    "leaderboard_musr_object_placements_fr": 1.0,
    "leaderboard_musr_team_allocation_fr": 1.0
  },
  "n-shot": {
    "leaderboard_bbh_compréhension_de_la_date": 3,
    "leaderboard_bbh_compréhension_des_sports": 3,
    "leaderboard_bbh_comptage_d_objets": 3,
    "leaderboard_bbh_déduction_logique_cinq_objets": 3,
    "leaderboard_bbh_déduction_logique_sept_objets": 3,
    "leaderboard_bbh_déduction_logique_trois_objets": 3,
    "leaderboard_bbh_désambiguïsation_qa": 3,
    "leaderboard_bbh_expressions_booléennes": 3,
    "leaderboard_bbh_formes_géométriques": 3,
    "leaderboard_bbh_hyperbate": 3,
    "leaderboard_bbh_jugement_causal": 3,
    "leaderboard_bbh_naviguer": 3,
    "leaderboard_bbh_pingouins_sur_une_table": 3,
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": 3,
    "leaderboard_bbh_recommandation_de_film": 3,
    "leaderboard_bbh_sarcasmes": 3,
    "leaderboard_bbh_sophismes_formels": 3,
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": 3,
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": 3,
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": 3,
    "leaderboard_bbh_séquences_temporelles": 3,
    "leaderboard_bbh_toile_de_mensonges": 3,
    "leaderboard_gpqa_diamond_fr": 0,
    "leaderboard_gpqa_extended_fr": 0,
    "leaderboard_gpqa_main_fr": 0,
    "leaderboard_ifeval_fr": 0,
    "leaderboard_math_algebra_hard_fr": 4,
    "leaderboard_math_counting_and_prob_hard_fr": 4,
    "leaderboard_math_geometry_hard_fr": 4,
    "leaderboard_math_num_theory_hard_fr": 4,
    "leaderboard_math_prealgebra_hard_fr": 4,
    "leaderboard_math_precalculus_hard_fr": 4,
    "leaderboard_mmlu_fr": 5,
    "leaderboard_musr_murder_mysteries_fr": 0,
    "leaderboard_musr_object_placements_fr": 0,
    "leaderboard_musr_team_allocation_fr": 0
  },
  "higher_is_better": {
    "leaderboard-fr": {
      "acc": true,
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true,
      "acc_norm": true,
      "exact_match": true
    },
    "leaderboard_bbh_compréhension_de_la_date": {
      "acc_norm": true
    },
    "leaderboard_bbh_compréhension_des_sports": {
      "acc_norm": true
    },
    "leaderboard_bbh_comptage_d_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_déduction_logique_cinq_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_déduction_logique_sept_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_déduction_logique_trois_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_désambiguïsation_qa": {
      "acc_norm": true
    },
    "leaderboard_bbh_expressions_booléennes": {
      "acc_norm": true
    },
    "leaderboard_bbh_formes_géométriques": {
      "acc_norm": true
    },
    "leaderboard_bbh_fr": {
      "acc": true,
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true,
      "acc_norm": true,
      "exact_match": true
    },
    "leaderboard_bbh_hyperbate": {
      "acc_norm": true
    },
    "leaderboard_bbh_jugement_causal": {
      "acc_norm": true
    },
    "leaderboard_bbh_naviguer": {
      "acc_norm": true
    },
    "leaderboard_bbh_pingouins_sur_une_table": {
      "acc_norm": true
    },
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": {
      "acc_norm": true
    },
    "leaderboard_bbh_recommandation_de_film": {
      "acc_norm": true
    },
    "leaderboard_bbh_sarcasmes": {
      "acc_norm": true
    },
    "leaderboard_bbh_sophismes_formels": {
      "acc_norm": true
    },
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": {
      "acc_norm": true
    },
    "leaderboard_bbh_séquences_temporelles": {
      "acc_norm": true
    },
    "leaderboard_bbh_toile_de_mensonges": {
      "acc_norm": true
    },
    "leaderboard_gpqa_diamond_fr": {
      "acc_norm": true
    },
    "leaderboard_gpqa_extended_fr": {
      "acc_norm": true
    },
    "leaderboard_gpqa_fr": {
      "acc": true,
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true,
      "acc_norm": true,
      "exact_match": true
    },
    "leaderboard_gpqa_main_fr": {
      "acc_norm": true
    },
    "leaderboard_ifeval_fr": {
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true
    },
    "leaderboard_math_algebra_hard_fr": {
      "exact_match": true
    },
    "leaderboard_math_counting_and_prob_hard_fr": {
      "exact_match": true
    },
    "leaderboard_math_geometry_hard_fr": {
      "exact_match": true
    },
    "leaderboard_math_hard_fr": {
      "acc": true,
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true,
      "acc_norm": true,
      "exact_match": true
    },
    "leaderboard_math_num_theory_hard_fr": {
      "exact_match": true
    },
    "leaderboard_math_prealgebra_hard_fr": {
      "exact_match": true
    },
    "leaderboard_math_precalculus_hard_fr": {
      "exact_match": true
    },
    "leaderboard_mmlu_fr": {
      "acc": true
    },
    "leaderboard_musr_fr": {
      "acc": true,
      "prompt_level_strict_acc": true,
      "inst_level_strict_acc": true,
      "prompt_level_loose_acc": true,
      "inst_level_loose_acc": true,
      "acc_norm": true,
      "exact_match": true
    },
    "leaderboard_musr_murder_mysteries_fr": {
      "acc_norm": true
    },
    "leaderboard_musr_object_placements_fr": {
      "acc_norm": true
    },
    "leaderboard_musr_team_allocation_fr": {
      "acc_norm": true
    }
  },
  "n-samples": {
    "leaderboard_mmlu_fr": {
      "original": 14042,
      "effective": 14042
    },
    "leaderboard_bbh_expressions_booléennes": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_jugement_causal": {
      "original": 187,
      "effective": 187
    },
    "leaderboard_bbh_compréhension_de_la_date": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_désambiguïsation_qa": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_sophismes_formels": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_formes_géométriques": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_hyperbate": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_déduction_logique_cinq_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_déduction_logique_sept_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_déduction_logique_trois_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_recommandation_de_film": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_naviguer": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_comptage_d_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_pingouins_sur_une_table": {
      "original": 146,
      "effective": 146
    },
    "leaderboard_bbh_raisonnement_sur_les_objets_colorés": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_sarcasmes": {
      "original": 178,
      "effective": 178
    },
    "leaderboard_bbh_compréhension_des_sports": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_séquences_temporelles": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_suivi_objets_mélangés_cinq_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_suivi_objets_mélangés_sept_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_suivi_objets_mélangés_trois_objets": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_bbh_toile_de_mensonges": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_gpqa_diamond_fr": {
      "original": 197,
      "effective": 197
    },
    "leaderboard_gpqa_extended_fr": {
      "original": 543,
      "effective": 543
    },
    "leaderboard_gpqa_main_fr": {
      "original": 429,
      "effective": 429
    },
    "leaderboard_math_algebra_hard_fr": {
      "original": 350,
      "effective": 350
    },
    "leaderboard_math_counting_and_prob_hard_fr": {
      "original": 196,
      "effective": 196
    },
    "leaderboard_math_geometry_hard_fr": {
      "original": 206,
      "effective": 206
    },
    "leaderboard_math_num_theory_hard_fr": {
      "original": 217,
      "effective": 217
    },
    "leaderboard_math_prealgebra_hard_fr": {
      "original": 113,
      "effective": 113
    },
    "leaderboard_math_precalculus_hard_fr": {
      "original": 84,
      "effective": 84
    },
    "leaderboard_ifeval_fr": {
      "original": 515,
      "effective": 515
    },
    "leaderboard_musr_murder_mysteries_fr": {
      "original": 250,
      "effective": 250
    },
    "leaderboard_musr_object_placements_fr": {
      "original": 256,
      "effective": 256
    },
    "leaderboard_musr_team_allocation_fr": {
      "original": 250,
      "effective": 250
    }
  },
  "config": {
    "model": "vllm",
    "model_args": "pretrained=MaziyarPanahi/calme-3.2-instruct-3b,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.7,data_parallel_size=4,enforce_eager=true,max_model_len=4096",
    "batch_size": "auto",
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": null,
    "bootstrap_iters": 100000,
    "gen_kwargs": null,
    "random_seed": 0,
    "numpy_seed": 1234,
    "torch_seed": 1234,
    "fewshot_seed": 1234
  },
  "git_hash": "64286c9b",
  "date": 1732302730.1127474,
  "pretty_env_info": "PyTorch version: 2.5.1+cu124\nIs debug build: False\nCUDA used to build PyTorch: 12.4\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.5 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.22.1\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov  6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1024-azure-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.4.131\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100 80GB PCIe\nGPU 1: NVIDIA A100 80GB PCIe\nGPU 2: NVIDIA A100 80GB PCIe\nGPU 3: NVIDIA A100 80GB PCIe\n\nNvidia driver version: 550.90.07\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture:                       x86_64\nCPU op-mode(s):                     32-bit, 64-bit\nAddress sizes:                      48 bits physical, 48 bits virtual\nByte Order:                         Little Endian\nCPU(s):                             96\nOn-line CPU(s) list:                0-95\nVendor ID:                          AuthenticAMD\nModel name:                         AMD EPYC 7V13 64-Core Processor\nCPU family:                         25\nModel:                              1\nThread(s) per core:                 1\nCore(s) per socket:                 48\nSocket(s):                          2\nStepping:                           1\nBogoMIPS:                           4890.87\nFlags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm\nHypervisor vendor:                  Microsoft\nVirtualization type:                full\nL1d cache:                          3 MiB (96 instances)\nL1i cache:                          3 MiB (96 instances)\nL2 cache:                           48 MiB (96 instances)\nL3 cache:                           384 MiB (12 instances)\nNUMA node(s):                       4\nNUMA node0 CPU(s):                  0-23\nNUMA node1 CPU(s):                  24-47\nNUMA node2 CPU(s):                  48-71\nNUMA node3 CPU(s):                  72-95\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit:        Not affected\nVulnerability L1tf:                 Not affected\nVulnerability Mds:                  Not affected\nVulnerability Meltdown:             Not affected\nVulnerability Mmio stale data:      Not affected\nVulnerability Retbleed:             Not affected\nVulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode\nVulnerability Spec store bypass:    Vulnerable\nVulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2:           Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected\nVulnerability Srbds:                Not affected\nVulnerability Tsx async abort:      Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] torch==2.5.1\n[pip3] torchvision==0.20.1\n[pip3] triton==3.1.0\n[conda] No relevant packages",
  "transformers_version": "4.46.3",
  "upper_git_hash": null,
  "tokenizer_pad_token": [
    "<|endoftext|>",
    "151643"
  ],
  "tokenizer_eos_token": [
    "<|im_end|>",
    "151645"
  ],
  "tokenizer_bos_token": [
    null,
    "None"
  ],
  "eot_token_id": 151645,
  "max_length": 4096,
  "task_hashes": {},
  "model_source": "vllm",
  "model_name": "MaziyarPanahi/calme-3.2-instruct-3b",
  "model_name_sanitized": "MaziyarPanahi__calme-3.2-instruct-3b",
  "system_instruction": null,
  "system_instruction_sha": null,
  "fewshot_as_multiturn": false,
  "chat_template": null,
  "chat_template_sha": null,
  "start_time": 10939.932692432,
  "end_time": 12569.107379979,
  "total_evaluation_time_seconds": "1629.1746875469998"
}