c4 / c4.py
system's picture
system HF staff
Update files from the datasets library (from 1.0.0)
213288b
raw
history blame
13.5 kB
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""C4 dataset based on Common Crawl."""
from __future__ import absolute_import, division, print_function
import json
import logging
import os
import datasets
from .c4_utils import (
dedupe_urls,
filter_by_webtextlike,
get_clean_page_fn,
get_counter_inc_fn,
get_hashed_url_filter_fn,
is_language,
is_realnews_domain,
is_valid_length,
normalize_url,
remove_duplicate_text,
split_wet_file,
)
_DESCRIPTION = """\
A colossal, cleaned version of Common Crawl's web crawl corpus.
Based on Common Crawl dataset: "https://commoncrawl.org"
Due to the overhead of cleaning the dataset, it is recommend you prepare it with
a distributed service like Cloud Dataflow. More info at
https://www.tensorflow.org/datasets/beam_datasets.
"""
_CITATION = """
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
"""
_VERSION = datasets.Version("2.3.0", "Deduplicate lines within a page.")
_DOWNLOAD_HOST = "https://commoncrawl.s3.amazonaws.com"
_WET_PATH_URL = "https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-{cc_version}/wet.paths.gz"
_REALNEWS_DOMAINS_URL = "https://raw.githubusercontent.com/rowanz/grover/38f7184bd87237ae2d3bc330b99f1e2e246f6d51/realnews/domain_to_allowed_subdomains.json"
_BADWORDS_URL = "https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/{lang}"
_CHECKSUMS_URL = "https://storage.googleapis.com/tfds-data/manual_checksums/c4.txt"
_OPENWEBTEXT_URLS_ZIP = "OpenWebText.zip"
_OPENWEBTEXT_URLS_URL = "https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ"
_OPENWEBTEXT_URLS_FILE_PATTERN = "OpenWebText/Version 1/URLs/*.txt"
_DEFAULT_CC_VERSIONS = ("2019-18",) # April 2019
_DEFAULT_WEBTEXTLIKE_CC_VERSIONS = ( # August 2018 - July 2019
"2018-34",
"2018-39",
"2018-43",
"2018-47",
"2018-51",
"2019-04",
"2019-09",
"2019-13",
"2019-18",
"2019-22",
"2019-26",
"2019-30",
)
class C4Config(datasets.BuilderConfig):
"""BuilderConfig for C4 dataset."""
def __init__(self, language, cc_versions=None, clean=True, realnewslike=False, webtextlike=False, **kwargs):
"""BuilderConfig for C4.
Args:
language: string, the language code, or "all" to disable language
filtering.
cc_versions: tuple(string), a collection of versions of Common Crawl to
use as the raw source text. Set to None to use defaults.
clean: bool, whether to clean the dataset for badwords, duplications, etc.
realnewslike: bool, whether to limit to news domains as compiled by
RealNews.
webtextlike: bool, whether to limit to WebText-like URLs.
**kwargs: keyword arguments forwarded to super.
"""
name_parts = [language]
if cc_versions:
name_parts.append("_".join(cc_versions))
if not clean:
name_parts.append("noclean")
if realnewslike:
name_parts.append("realnewslike")
if webtextlike:
name_parts.append("webtextlike")
name = ".".join(name_parts)
super(C4Config, self).__init__(name=name, version=_VERSION, **kwargs)
self.lang = language
self.cc_versions = cc_versions or (_DEFAULT_WEBTEXTLIKE_CC_VERSIONS if webtextlike else _DEFAULT_CC_VERSIONS)
self.clean = clean
self.realnewslike = realnewslike
self.webtextlike = webtextlike
class C4(datasets.BeamBasedBuilder):
"""C4 dataset based on Common Crawl."""
BUILDER_CONFIGS = [
C4Config(language="en", description="English C4 dataset."),
C4Config(
language="en",
clean=False,
description="Disables all cleaning (deduplication, removal based on bad words, " "etc.)",
),
C4Config(
language="en",
realnewslike=True,
description="Filters from the default config to only include content from the "
"domains used in the 'RealNews' dataset (Zellers et al., 2019).",
),
C4Config(
language="en",
webtextlike=True,
description="Filters from the default config to only include content from the "
"URLs in OpenWebText (https://github.com/jcpeterson/openwebtext).",
),
]
def manual_download_instructions(self):
return """\
For the WebText-like config, you must manually download 'OpenWebText.zip'
(from https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ) and the Common Crawl
WET files from August 2018 to July 2019
(https://commoncrawl.org/the-data/get-started/) and place them in the
`data_dir`.
"""
def _info(self):
features = {
"text": datasets.Value("string"),
"url": datasets.Value("string"),
"content-type": datasets.Value("string"),
"content-length": datasets.Value("string"),
"timestamp": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
citation=_CITATION,
homepage="https://github.com/google-research/text-to-text-transfer-transformer#datasets",
)
def _split_generators(self, dl_manager, pipeline):
import apache_beam as beam
# We will automatically down the default CC version(s), but others need to
# be manually downloaded.
cc_versions = set(self.config.cc_versions)
auto_cc_versions = cc_versions & set(_DEFAULT_CC_VERSIONS)
manual_cc_versions = cc_versions - set(_DEFAULT_CC_VERSIONS)
files_to_download = {}
files_to_download["wet_path_urls"] = [
_WET_PATH_URL.format(cc_version=cc_version) for cc_version in auto_cc_versions
]
if self.config.clean:
files_to_download["badwords"] = _BADWORDS_URL.format(lang=self.config.lang)
if self.config.realnewslike:
files_to_download["realnews_domains"] = _REALNEWS_DOMAINS_URL
file_paths = dl_manager.download_and_extract(files_to_download)
if self.config.webtextlike:
owt_path = os.path.join(dl_manager.manual_dir, _OPENWEBTEXT_URLS_ZIP)
if not os.path.exists(owt_path):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes a file name {}. Manual download instructions: {})".format(
owt_path, _OPENWEBTEXT_URLS_ZIP, self.manual_download_instructions
)
)
file_paths["openwebtext_urls_zip"] = dl_manager.extract(owt_path)
wet_urls = []
for wet_path_url in file_paths["wet_path_urls"]:
with open(wet_path_url, "r", encoding="utf-8") as f:
wet_urls.extend(["%s/%s" % (_DOWNLOAD_HOST, l.strip()) for l in f])
file_paths["wet_urls"] = wet_urls
file_paths["wet_files"] = []
for cc_version in manual_cc_versions:
cc_dir = os.path.join(dl_manager.manual_dir, cc_version)
wet_files = beam.io.filesystems.FileSystems.match(os.path.join(cc_dir, "*.warc.wet.gz"))
if not os.path.exists(cc_dir):
raise FileNotFoundError(
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes the files {}. Manual download instructions: {})".format(
cc_dir, "*.warc.wet.gz", self.manual_download_instructions
)
)
logging.info("Adding %d WET files for manually downloaded version %s.", len(wet_files), cc_version)
file_paths["wet_files"].extend(wet_files)
page_content_pcollection = self._get_page_content(pipeline, file_paths, dl_manager)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs=dict(
split="train",
page_content=page_content_pcollection,
hashed_url_predicate=lambda x: x % 1000 != 0, # 99.9%
),
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs=dict(
split="validation",
page_content=page_content_pcollection,
hashed_url_predicate=lambda x: x % 1000 == 0, # 0.01%
),
),
]
def _get_page_content(self, pipeline, file_paths, dl_manager):
"""Build PCollection of un-split page content."""
import apache_beam as beam
wet_file_paths = pipeline | "create_wet_files" >> beam.Create(file_paths["wet_files"])
if "wet_urls" in file_paths:
def download_url(url, downloader, pipeline):
path = downloader.download(url)
if not pipeline.is_local():
path = downloader.ship_files_with_pipeline(path, pipeline)
return path
dl_wet_file_paths = (
pipeline
| "create_wet_urls" >> beam.Create(file_paths["wet_urls"])
| beam.Map(download_url, downloader=dl_manager, pipeline=pipeline)
)
wet_file_paths = (wet_file_paths, dl_wet_file_paths) | beam.Flatten()
# Parse WET files and filter by length.
# Output: url, text
page_content = wet_file_paths | beam.FlatMap(split_wet_file) | beam.Filter(is_valid_length)
# Optionally filter for RealNews domains.
# Output: url, text
if self.config.realnewslike:
with open(file_paths["realnews_domains"], "r", encoding="utf-8") as f:
realnews_domains = json.load(f)
page_content = page_content | beam.Filter(is_realnews_domain, realnews_domains)
# Normalize and deduplicate by URL.
# Output: url, text
page_content = (
page_content
| "normalize_url" >> beam.Map(normalize_url)
| "group_url" >> beam.GroupByKey()
| beam.Map(dedupe_urls)
)
# Optionally filter for WebText-like URLs.
# Output: url, text
if self.config.webtextlike:
webtextlike_urls = (
pipeline
| "read_webtextlike_urls"
>> beam.io.ReadFromText(
os.path.join(file_paths["openwebtext_urls_zip"], _OPENWEBTEXT_URLS_FILE_PATTERN)
)
| "add_dummy_page" >> beam.Map(lambda x: (x, ""))
| "normal_webtext_url" >> beam.Map(normalize_url)
)
page_content = (
{"text": page_content, "webtextlike_urls": webtextlike_urls}
| "group_webtextlike_urls" >> beam.CoGroupByKey()
| beam.FlatMap(filter_by_webtextlike)
)
# Optionally clean pages of badwords, boilerpolate text, and duplicate
# spans of sentences.
# Output: url, text
if self.config.clean:
with open(file_paths["badwords"], "r", encoding="utf-8") as f:
badwords = [l.strip() for l in f]
page_content = page_content | "clean_pages" >> beam.FlatMap(get_clean_page_fn(badwords))
page_content = remove_duplicate_text(page_content)
# Optionally filter out non-`language` pages. We do this after cleaning
# since it may change the predominate language.
if self.config.lang != "all":
page_content |= beam.Filter(is_language, language=self.config.lang)
return page_content
def _build_pcollection(self, unused_pipeline, split, page_content, hashed_url_predicate):
import apache_beam as beam
def _emit_examples(el):
get_counter_inc_fn(split)("examples")
_, features = el
return (
features["url"],
{
"url": features["url"],
"text": features["text"],
"content-type": features["content-type"],
"content-length": features["content-length"],
"timestamp": features["timestamp"],
},
)
return page_content | beam.Filter(get_hashed_url_filter_fn(hashed_url_predicate)) | beam.Map(_emit_examples)