system HF staff commited on
Commit
d91f572
·
0 Parent(s):

Update files from the datasets library (from 1.16.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.16.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: MultiLingual LibriSpeech
3
+ annotations_creators:
4
+ - expert-generated
5
+ language_creators:
6
+ - crowdsourced
7
+ - expert-generated
8
+ languages:
9
+ - de
10
+ - nl
11
+ - fr
12
+ - it
13
+ - es
14
+ - pt
15
+ - pl
16
+ licenses:
17
+ - cc-by-4-0
18
+ multilinguality:
19
+ - monolingual
20
+ paperswithcode_id: librispeech-1
21
+ size_categories:
22
+ - 100K<n<1M
23
+ source_datasets:
24
+ - original
25
+ task_categories:
26
+ - speech-processing
27
+ task_ids:
28
+ - automatic-speech-recognition
29
+ ---
30
+
31
+ # Dataset Card for MultiLingual LibriSpeech
32
+
33
+ ## Table of Contents
34
+ - [Dataset Description](#dataset-description)
35
+ - [Dataset Summary](#dataset-summary)
36
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
37
+ - [Languages](#languages)
38
+ - [Dataset Structure](#dataset-structure)
39
+ - [Data Instances](#data-instances)
40
+ - [Data Fields](#data-fields)
41
+ - [Data Splits](#data-splits)
42
+ - [Dataset Creation](#dataset-creation)
43
+ - [Curation Rationale](#curation-rationale)
44
+ - [Source Data](#source-data)
45
+ - [Annotations](#annotations)
46
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
47
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
48
+ - [Social Impact of Dataset](#social-impact-of-dataset)
49
+ - [Discussion of Biases](#discussion-of-biases)
50
+ - [Other Known Limitations](#other-known-limitations)
51
+ - [Additional Information](#additional-information)
52
+ - [Dataset Curators](#dataset-curators)
53
+ - [Licensing Information](#licensing-information)
54
+ - [Citation Information](#citation-information)
55
+ - [Contributions](#contributions)
56
+
57
+ ## Dataset Description
58
+
59
+ - **Homepage:** [MultiLingual LibriSpeech ASR corpus](http://www.openslr.org/94)
60
+ - **Repository:** [Needs More Information]
61
+ - **Paper:** [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
62
+ - **Leaderboard:** [Paperswithcode Leaderboard](https://paperswithcode.com/dataset/multilingual-librispeech)
63
+
64
+ ### Dataset Summary
65
+
66
+ Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
67
+
68
+ ### Supported Tasks and Leaderboards
69
+
70
+ - `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.
71
+
72
+ ### Languages
73
+
74
+ The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish
75
+
76
+ ## Dataset Structure
77
+
78
+ ### Data Instances
79
+
80
+ A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.
81
+
82
+ ```
83
+ {'chapter_id': 141231,
84
+ 'file': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
85
+ 'audio': {'path': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
86
+ 'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346,
87
+ 0.00091553, 0.00085449], dtype=float32),
88
+ 'sampling_rate': 16000},
89
+ 'id': '1272-141231-0000',
90
+ 'speaker_id': 1272,
91
+ 'text': 'A MAN SAID TO THE UNIVERSE SIR I EXIST'}
92
+ ```
93
+
94
+
95
+ ### Data Fields
96
+
97
+ - file: A path to the downloaded audio file in .flac format.
98
+
99
+ - audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
100
+
101
+ - text: the transcription of the audio file.
102
+
103
+ - id: unique id of the data sample.
104
+
105
+ - speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.
106
+
107
+ - chapter_id: id of the audiobook chapter which includes the transcription.
108
+
109
+ ### Data Splits
110
+
111
+ | | Train | Train.9h | Train.1h | Dev | Test |
112
+ | ----- | ------ | ----- | ---- | ---- | ---- |
113
+ | german | 469942 | 2194 | 241 | 3469 | 3394 |
114
+ | dutch | 374287 | 2153 | 234 | 3095 | 3075 |
115
+ | french | 258213 | 2167 | 241 | 2416 | 2426 |
116
+ | spanish | 220701 | 2110 | 233 | 2408 | 2385 |
117
+ | italian | 59623 | 2173 | 240 | 1248 | 1262 |
118
+ | portuguese | 37533 | 2116 | 236 | 826 | 871 |
119
+ | polish | 25043 | 2173 | 238 | 512 | 520 |
120
+
121
+
122
+
123
+ ## Dataset Creation
124
+
125
+ ### Curation Rationale
126
+
127
+ [Needs More Information]
128
+
129
+ ### Source Data
130
+
131
+ #### Initial Data Collection and Normalization
132
+
133
+ [Needs More Information]
134
+
135
+ #### Who are the source language producers?
136
+
137
+ [Needs More Information]
138
+
139
+ ### Annotations
140
+
141
+ #### Annotation process
142
+
143
+ [Needs More Information]
144
+
145
+ #### Who are the annotators?
146
+
147
+ [Needs More Information]
148
+
149
+ ### Personal and Sensitive Information
150
+
151
+ [Needs More Information]
152
+
153
+ ## Considerations for Using the Data
154
+
155
+ ### Social Impact of Dataset
156
+
157
+ [More Information Needed]
158
+
159
+ ### Discussion of Biases
160
+
161
+ [More Information Needed]
162
+
163
+ ### Other Known Limitations
164
+
165
+ [Needs More Information]
166
+
167
+ ## Additional Information
168
+
169
+ ### Dataset Curators
170
+
171
+ [Needs More Information]
172
+
173
+ ### Licensing Information
174
+
175
+ CC BY 4.0
176
+
177
+ ### Citation Information
178
+
179
+ ```
180
+ @article{Pratap2020MLSAL,
181
+ title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
182
+ author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
183
+ journal={ArXiv},
184
+ year={2020},
185
+ volume={abs/2012.03411}
186
+ }
187
+ ```
188
+
189
+ ### Contributions
190
+
191
+ Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"polish": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "polish", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 16136430, "num_examples": 25043, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1383232, "num_examples": 2173, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 145411, "num_examples": 238, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 318964, "num_examples": 512, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 332317, "num_examples": 520, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_polish.tar.gz": {"num_bytes": 6609569551, "checksum": "f911a08c4019891cc85b08995dc0f171e16d201037c02f69023beecef5b51d61"}}, "download_size": 6609569551, "post_processing_size": null, "dataset_size": 18316354, "size_in_bytes": 6627885905}, "german": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "german", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 277089334, "num_examples": 469942, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1325460, "num_examples": 2194, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 145998, "num_examples": 241, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 2160779, "num_examples": 3469, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 2131177, "num_examples": 3394, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_german.tar.gz": {"num_bytes": 122944886305, "checksum": "cea7912396a33cc599f86221f612a2eb1004b98ece3f60124710555eb5134b5c"}}, "download_size": 122944886305, "post_processing_size": null, "dataset_size": 282852748, "size_in_bytes": 123227739053}, "dutch": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "dutch", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 218648573, "num_examples": 374287, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1281951, "num_examples": 2153, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 141672, "num_examples": 234, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 1984165, "num_examples": 3095, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 1945428, "num_examples": 3075, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_dutch.tar.gz": {"num_bytes": 92158429530, "checksum": "f2c4b3deb5b918786c1819bc907adac8dd01413478bf3e51f3021aa66cc5a692"}}, "download_size": 92158429530, "post_processing_size": null, "dataset_size": 224001789, "size_in_bytes": 92382431319}, "french": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "french", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 162009691, "num_examples": 258213, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1347707, "num_examples": 2167, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 146699, "num_examples": 241, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 1482961, "num_examples": 2416, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 1539152, "num_examples": 2426, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_french.tar.gz": {"num_bytes": 64474642518, "checksum": "6e02cd822be42067a9b2b79dff65b4421295686471f16efde226baae4e7c7033"}}, "download_size": 64474642518, "post_processing_size": null, "dataset_size": 166526210, "size_in_bytes": 64641168728}, "spanish": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "spanish", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 136743162, "num_examples": 220701, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1288180, "num_examples": 2110, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 138734, "num_examples": 233, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 1463115, "num_examples": 2408, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 1464565, "num_examples": 2385, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_spanish.tar.gz": {"num_bytes": 53296894035, "checksum": "3cd4b1e8f40499d5a8b2834a1cc679a4673df5acb25bfd0ded1742ec451bc2f0"}}, "download_size": 53296894035, "post_processing_size": null, "dataset_size": 141097756, "size_in_bytes": 53437991791}, "italian": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "italian", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 36008104, "num_examples": 59623, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1325927, "num_examples": 2173, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 145006, "num_examples": 240, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 732210, "num_examples": 1248, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 746977, "num_examples": 1262, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_italian.tar.gz": {"num_bytes": 15395281399, "checksum": "cfb0a5cc22e6e25982c7ee235fd068c1756901ab9e1cbb97bf18f0583e771902"}}, "download_size": 15395281399, "post_processing_size": null, "dataset_size": 38958224, "size_in_bytes": 15434239623}, "portuguese": {"description": "Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.\n", "citation": "@article{Pratap2020MLSAL,\n title={MLS: A Large-Scale Multilingual Dataset for Speech Research},\n author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},\n journal={ArXiv},\n year={2020},\n volume={abs/2012.03411}\n}\n", "homepage": "http://www.openslr.org/94", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "audio": {"sampling_rate": 16000, "mono": true, "id": null, "_type": "Audio"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "file", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "multilingual_librispeech", "config_name": "portuguese", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 23036487, "num_examples": 37533, "dataset_name": "multilingual_librispeech"}, "train.9h": {"name": "train.9h", "num_bytes": 1305698, "num_examples": 2116, "dataset_name": "multilingual_librispeech"}, "train.1h": {"name": "train.1h", "num_bytes": 143781, "num_examples": 236, "dataset_name": "multilingual_librispeech"}, "validation": {"name": "validation", "num_bytes": 512463, "num_examples": 826, "dataset_name": "multilingual_librispeech"}, "test": {"name": "test", "num_bytes": 549893, "num_examples": 871, "dataset_name": "multilingual_librispeech"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/mls/mls_portuguese.tar.gz": {"num_bytes": 9982803818, "checksum": "89bed1e0ba5acb6f69da14e7063d4a3c3999d13c11af50ae652a3ced80f39164"}}, "download_size": 9982803818, "post_processing_size": null, "dataset_size": 25548322, "size_in_bytes": 10008352140}}
dummy/dutch/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88217d917d483c4c1d167533ac9ddd0e2042ff20b039d036829260af05358940
3
+ size 4275
dummy/french/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46e7613e299959b58aa0abdd872e630411f22e61f5e22831e4fcd452fdf26889
3
+ size 4301
dummy/german/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8dbfdf95bc47f1c43181cbb3d8a150836e6e42b6ffd06ccb2e24845e3ecadf8
3
+ size 4301
dummy/italian/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b5e16a1a99bf2329e7f2effa6dca6396f5eb9dabc6e70e49e9fd807a8e55a58
3
+ size 4327
dummy/polish/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21ef19428fc13c4ab8380ce4ddd3b010a0d4b5d6c90aeb592360cc9da0890d57
3
+ size 4301
dummy/portuguese/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa94004b97735c185cda2625de79aaa0ce3c0d856b152f58d36ee529f58dbdc3
3
+ size 4405
dummy/spanish/2.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61bb7970f04f744623278e89193ce9a4bfaa841e3da22ff4db337fcd9ac00651
3
+ size 4327
multilingual_librispeech.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Multilingual Librispeech automatic speech recognition dataset."""
18
+
19
+
20
+ import glob
21
+ import os
22
+
23
+ import datasets
24
+ from datasets.tasks import AutomaticSpeechRecognition
25
+
26
+
27
+ _CITATION = """\
28
+ @article{Pratap2020MLSAL,
29
+ title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
30
+ author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
31
+ journal={ArXiv},
32
+ year={2020},
33
+ volume={abs/2012.03411}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.
39
+ """
40
+
41
+ _URL = "http://www.openslr.org/94"
42
+ _DL_URL_FORMAT = "https://dl.fbaipublicfiles.com/mls/mls_{}.tar.gz"
43
+
44
+
45
+ class MultilingualLibrispeechConfig(datasets.BuilderConfig):
46
+ """BuilderConfig for MultilingualLibrispeech."""
47
+
48
+ def __init__(self, name, **kwargs):
49
+ """
50
+ Args:
51
+ name: `string`, name of dataset config
52
+ **kwargs: keyword arguments forwarded to super.
53
+ """
54
+ super(MultilingualLibrispeechConfig, self).__init__(
55
+ version=datasets.Version("2.1.0", ""), name=name, data_dir=_DL_URL_FORMAT.format(name), **kwargs
56
+ )
57
+
58
+
59
+ class MultilingualLibrispeech(datasets.GeneratorBasedBuilder):
60
+ """Multilingual Librispeech dataset."""
61
+
62
+ BUILDER_CONFIGS = [
63
+ MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"),
64
+ MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"),
65
+ MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"),
66
+ MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"),
67
+ MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"),
68
+ MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"),
69
+ MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"),
70
+ ]
71
+
72
+ def _info(self):
73
+ return datasets.DatasetInfo(
74
+ description=_DESCRIPTION,
75
+ features=datasets.Features(
76
+ {
77
+ "file": datasets.Value("string"),
78
+ "audio": datasets.features.Audio(sampling_rate=16_000),
79
+ "text": datasets.Value("string"),
80
+ "speaker_id": datasets.Value("int64"),
81
+ "chapter_id": datasets.Value("int64"),
82
+ "id": datasets.Value("string"),
83
+ }
84
+ ),
85
+ supervised_keys=("file", "text"),
86
+ homepage=_URL,
87
+ citation=_CITATION,
88
+ task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
89
+ )
90
+
91
+ def _split_generators(self, dl_manager):
92
+ archive_path = dl_manager.download_and_extract(self.config.data_dir)
93
+ data_path = os.path.join(archive_path, "mls_" + self.config.name)
94
+
95
+ train_splits = [
96
+ datasets.SplitGenerator(
97
+ name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_path, "train")}
98
+ ),
99
+ datasets.SplitGenerator(
100
+ name="train.9h",
101
+ gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/9hr"},
102
+ ),
103
+ datasets.SplitGenerator(
104
+ name="train.1h",
105
+ gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/1hr"},
106
+ ),
107
+ ]
108
+
109
+ return train_splits + [
110
+ datasets.SplitGenerator(
111
+ name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(data_path, "dev")}
112
+ ),
113
+ datasets.SplitGenerator(
114
+ name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(data_path, "test")}
115
+ ),
116
+ ]
117
+
118
+ def _generate_examples(self, data_dir, sub_folder=""):
119
+ """Generate examples from a Multilingual LibriSpeech data dir."""
120
+ transcript_path = os.path.join(data_dir, "transcripts.txt")
121
+ key = 0
122
+
123
+ all_ids = None
124
+ if sub_folder != "":
125
+ sub_path = os.path.join(data_dir, sub_folder)
126
+ all_ids_paths = glob.glob(sub_path + "/*/*.txt") + glob.glob(sub_path + "/*.txt")
127
+ all_ids = []
128
+ for path in all_ids_paths:
129
+ with open(path, "r", encoding="utf-8") as f:
130
+ all_ids += [l.strip() for l in f.readlines()]
131
+
132
+ all_ids = set(all_ids)
133
+
134
+ with open(transcript_path, "r", encoding="utf-8") as f:
135
+ for line in f:
136
+ line = line.strip()
137
+ id_, transcript = line.split("\t")
138
+
139
+ if all_ids is not None and id_ not in all_ids:
140
+ # this only holds true for train.9h and train.1h
141
+ continue
142
+
143
+ audio_file = f"{id_}.flac"
144
+ speaker_id, chapter_id = [int(el) for el in id_.split("_")[:2]]
145
+ yield key, {
146
+ "id": id_,
147
+ "speaker_id": speaker_id,
148
+ "chapter_id": chapter_id,
149
+ "file": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
150
+ "audio": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file),
151
+ "text": transcript,
152
+ }
153
+ key += 1