# coding=utf-8 # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Multilingual Librispeech automatic speech recognition dataset.""" import glob import os import datasets from datasets.tasks import AutomaticSpeechRecognition _CITATION = """\ @article{Pratap2020MLSAL, title={MLS: A Large-Scale Multilingual Dataset for Speech Research}, author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert}, journal={ArXiv}, year={2020}, volume={abs/2012.03411} } """ _DESCRIPTION = """\ Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. """ _URL = "http://www.openslr.org/94" _DL_URL_FORMAT = "https://dl.fbaipublicfiles.com/mls/mls_{}.tar.gz" class MultilingualLibrispeechConfig(datasets.BuilderConfig): """BuilderConfig for MultilingualLibrispeech.""" def __init__(self, name, **kwargs): """ Args: name: `string`, name of dataset config **kwargs: keyword arguments forwarded to super. """ super(MultilingualLibrispeechConfig, self).__init__( version=datasets.Version("2.1.0", ""), name=name, data_dir=_DL_URL_FORMAT.format(name), **kwargs ) class MultilingualLibrispeech(datasets.GeneratorBasedBuilder): """Multilingual Librispeech dataset.""" BUILDER_CONFIGS = [ MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"), MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"), MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"), MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"), MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"), MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"), MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "file": datasets.Value("string"), "audio": datasets.features.Audio(sampling_rate=16_000), "text": datasets.Value("string"), "speaker_id": datasets.Value("int64"), "chapter_id": datasets.Value("int64"), "id": datasets.Value("string"), } ), supervised_keys=("file", "text"), homepage=_URL, citation=_CITATION, task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")], ) def _split_generators(self, dl_manager): archive_path = dl_manager.download_and_extract(self.config.data_dir) data_path = os.path.join(archive_path, "mls_" + self.config.name) train_splits = [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_path, "train")} ), datasets.SplitGenerator( name="train.9h", gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/9hr"}, ), datasets.SplitGenerator( name="train.1h", gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/1hr"}, ), ] return train_splits + [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(data_path, "dev")} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(data_path, "test")} ), ] def _generate_examples(self, data_dir, sub_folder=""): """Generate examples from a Multilingual LibriSpeech data dir.""" transcript_path = os.path.join(data_dir, "transcripts.txt") key = 0 all_ids = None if sub_folder != "": sub_path = os.path.join(data_dir, sub_folder) all_ids_paths = glob.glob(sub_path + "/*/*.txt") + glob.glob(sub_path + "/*.txt") all_ids = [] for path in all_ids_paths: with open(path, "r", encoding="utf-8") as f: all_ids += [line.strip() for line in f.readlines()] all_ids = set(all_ids) with open(transcript_path, "r", encoding="utf-8") as f: for line in f: line = line.strip() id_, transcript = line.split("\t") if all_ids is not None and id_ not in all_ids: # this only holds true for train.9h and train.1h continue audio_file = f"{id_}.flac" speaker_id, chapter_id = [int(el) for el in id_.split("_")[:2]] yield key, { "id": id_, "speaker_id": speaker_id, "chapter_id": chapter_id, "file": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file), "audio": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file), "text": transcript, } key += 1