File size: 5,721 Bytes
e83e85c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdfd189
1216da6
80d48f3
e83e85c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d084710
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""

import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,
    title = "Introduction to the Fault_Detection_Ner Task: Language-Independent Named Entity Recognition",
    author = "Tian Jie",
    year = "2022"
}
"""

_DESCRIPTION = """\
用于故障诊断领域相关知识的命名实体识别语料
"""

# _URL = "https://cdn-lfs.huggingface.co/datasets/leonadase/fdner/89a87eacfebc06862ac4b5a356c35430dfdf8ef2f0f2e0d9ff5e02ce6c117474"
# _URL = "https://cdn-lfs.huggingface.co/datasets/leonadase/fdner/a39f75df8cb9e419024417c36d7a21acfe79f7fdd2f31a4a9f0658adf734c2f1"
_URL = "https://huggingface.co/datasets/leonadase/fdner/resolve/main/fdner11.zip"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "valid.txt"
_TEST_FILE = "test.txt"


class fdnerConfig(datasets.BuilderConfig):
    """BuilderConfig for fdNer"""

    def __init__(self, **kwargs):
        """BuilderConfig for fdNer.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        logger.info("Generating examples from 1")
        super(fdnerConfig, self).__init__(**kwargs)


class fdner(datasets.GeneratorBasedBuilder):
    """fdNer dataset."""

    BUILDER_CONFIGS = [
        fdnerConfig(name="fdner", version=datasets.Version("1.0.0"), description="fdner dataset"),
    ]

    def _info(self):
        logger.info("Generating examples from 1")
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-EN",
                                "I-EN",
                                "B-STRUC",
                                "I-STRUC",
                                "B-CHA",
                                "I-CHA",
                                "B-KIND",
                                "I-KIND",
                                "B-ADV",
                                "I-ADV",
                                "B-DISA",
                                "I-DISA",
                                "B-METH",
                                "I-METH",
                                "B-NUM",
                                "I-NUM",
                                "B-PRO",
                                "I-PRO",
                                "B-THE",
                                "I-THE",
                                "B-DEF",
                                "I-DEF",
                                "B-FUC",
                                "I-FUC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            # homepage="https://www.aclweb.org/anthology/W03-0419/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        logger.info("Generating examples from 2")    
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract(_URL)
        data_files = {
            "train": os.path.join(downloaded_file, _TRAINING_FILE),
            "dev": os.path.join(downloaded_file, _DEV_FILE),
            "test": os.path.join(downloaded_file, _TEST_FILE),
        }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
        ]
    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }