# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" import os import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{tjong-kim-sang-de-meulder-2003-introduction, title = "Introduction to the Fault_Detection_Ner Task: Language-Independent Named Entity Recognition", author = "Tian Jie", year = "2022" } """ _DESCRIPTION = """\ 用于故障诊断领域相关知识的命名实体识别语料 """ # _URL = "https://cdn-lfs.huggingface.co/datasets/leonadase/fdner/89a87eacfebc06862ac4b5a356c35430dfdf8ef2f0f2e0d9ff5e02ce6c117474" # _URL = "https://cdn-lfs.huggingface.co/datasets/leonadase/fdner/a39f75df8cb9e419024417c36d7a21acfe79f7fdd2f31a4a9f0658adf734c2f1" _URL = "https://huggingface.co/datasets/leonadase/fdner/resolve/main/fdner11.zip" _TRAINING_FILE = "train.txt" _DEV_FILE = "valid.txt" _TEST_FILE = "test.txt" class fdnerConfig(datasets.BuilderConfig): """BuilderConfig for fdNer""" def __init__(self, **kwargs): """BuilderConfig for fdNer. Args: **kwargs: keyword arguments forwarded to super. """ logger.info("Generating examples from 1") super(fdnerConfig, self).__init__(**kwargs) class fdner(datasets.GeneratorBasedBuilder): """fdNer dataset.""" BUILDER_CONFIGS = [ fdnerConfig(name="fdner", version=datasets.Version("1.0.0"), description="fdner dataset"), ] def _info(self): logger.info("Generating examples from 1") return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-EN", "I-EN", "B-STRUC", "I-STRUC", "B-CHA", "I-CHA", "B-KIND", "I-KIND", "B-ADV", "I-ADV", "B-DISA", "I-DISA", "B-METH", "I-METH", "B-NUM", "I-NUM", "B-PRO", "I-PRO", "B-THE", "I-THE", "B-DEF", "I-DEF", "B-FUC", "I-FUC", ] ) ), } ), supervised_keys=None, # homepage="https://www.aclweb.org/anthology/W03-0419/", citation=_CITATION, ) def _split_generators(self, dl_manager): logger.info("Generating examples from 2") """Returns SplitGenerators.""" downloaded_file = dl_manager.download_and_extract(_URL) data_files = { "train": os.path.join(downloaded_file, _TRAINING_FILE), "dev": os.path.join(downloaded_file, _DEV_FILE), "test": os.path.join(downloaded_file, _TEST_FILE), } return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] ner_tags = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # conll2003 tokens are space separated splits = line.split(" ") tokens.append(splits[0]) ner_tags.append(splits[1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }