Datasets:
Languages:
Portuguese
License:
import csv | |
import json | |
import os | |
import datasets | |
_DESCRIPTION = """\ | |
FIQA translated dataset to portuguese | |
""" | |
_URLS = { | |
"corpus": "https://huggingface.co/datasets/leonardo-avila/fiqa_pt/blob/main/corpus_pt.tsv", | |
"topics": "https://huggingface.co/datasets/leonardo-avila/fiqa_pt/blob/main/topics_pt.tsv", | |
"qrel": "https://huggingface.co/qrel.tsv", | |
} | |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case | |
class BeirPT(datasets.GeneratorBasedBuilder): | |
"""BEIR BenchmarkDataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="corpus", version=VERSION, description="Load corpus"), | |
datasets.BuilderConfig(name="topics", version=VERSION, description="Load topics"), | |
datasets.BuilderConfig(name="qrel", version=VERSION, description="Load qrel"), | |
] | |
DEFAULT_CONFIG_NAME = "corpus" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
if self.config.name in ["corpus", "topics"]: | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"query_id": datasets.Value("string"), | |
"doc_id": datasets.Value("string"), | |
"rel": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
data_dir = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=self.config.name, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={"filepath": data_dir}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
with open(filepath, encoding="utf-8") as f: | |
if self.config.name in ["corpus", "topics"]: | |
for line in f: | |
fields = line.strip().split("\t") | |
idx = fields[0] | |
text = fields[1] | |
yield idx, text | |
else: | |
for line in f: | |
if "query-id" not in line: | |
fields = line.strip().split("\t") | |
query_id = fields[0] | |
doc_id = fields[1] | |
rel = int(fields[2]) | |
yield query_id, doc_id, rel |