import csv import json import os import datasets _DESCRIPTION = """\ FIQA translated dataset to portuguese """ _URLS = { "corpus": "https://huggingface.co/datasets/leonardo-avila/fiqa_pt/blob/main/corpus_pt.tsv", "topics": "https://huggingface.co/datasets/leonardo-avila/fiqa_pt/blob/main/topics_pt.tsv", "qrel": "https://huggingface.co/qrel.tsv", } # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class BeirPT(datasets.GeneratorBasedBuilder): """BEIR BenchmarkDataset.""" VERSION = datasets.Version("1.1.0") # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig(name="corpus", version=VERSION, description="Load corpus"), datasets.BuilderConfig(name="topics", version=VERSION, description="Load topics"), datasets.BuilderConfig(name="qrel", version=VERSION, description="Load qrel"), ] DEFAULT_CONFIG_NAME = "corpus" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): if self.config.name in ["corpus", "topics"]: features = datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), } ) else: # This is an example to show how to have different features for "first_domain" and "second_domain" features = datasets.Features( { "query_id": datasets.Value("string"), "doc_id": datasets.Value("string"), "rel": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=self.config.name, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": data_dir}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: if self.config.name in ["corpus", "topics"]: for line in f: fields = line.strip().split("\t") idx = fields[0] text = fields[1] yield idx, text else: for line in f: if "query-id" not in line: fields = line.strip().split("\t") query_id = fields[0] doc_id = fields[1] rel = int(fields[2]) yield query_id, doc_id, rel