File size: 9,022 Bytes
1f3d2f6
c0c2057
 
 
 
4165ea1
ac01b6f
4165ea1
e17118e
c0c2057
 
69ded22
c0c2057
 
 
 
 
 
076553a
c0c2057
 
a345e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78842f7
 
 
a345e84
 
1f3d2f6
 
 
 
 
 
 
69ded22
1f3d2f6
 
 
 
69ded22
1f3d2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437dc40
1f3d2f6
 
 
 
 
 
 
 
 
437dc40
1f3d2f6
 
 
 
 
 
 
 
 
 
 
69ded22
1f3d2f6
 
 
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
437dc40
1f3d2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
437dc40
1f3d2f6
c0c2057
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3d2f6
69ded22
1f3d2f6
c0c2057
 
 
1f3d2f6
437dc40
1f3d2f6
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
69ded22
 
 
 
 
 
1f3d2f6
 
437dc40
1f3d2f6
69ded22
 
 
 
 
 
1f3d2f6
 
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
 
 
437dc40
1f3d2f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
annotations_creators:
- crowdsourced
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: wnut-2017-emerging-and-rare-entity
pretty_name: WNUT 17
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          0: O
          1: B-corporation
          2: I-corporation
          3: B-creative-work
          4: I-creative-work
          5: B-group
          6: I-group
          7: B-location
          8: I-location
          9: B-person
          10: I-person
          11: B-product
          12: I-product
  config_name: wnut_17
  splits:
  - name: train
    num_bytes: 1078379
    num_examples: 3394
  - name: validation
    num_bytes: 259383
    num_examples: 1009
  - name: test
    num_bytes: 405536
    num_examples: 1287
  download_size: 800955
  dataset_size: 1743298
---

# Dataset Card for "wnut_17"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [http://noisy-text.github.io/2017/emerging-rare-entities.html](http://noisy-text.github.io/2017/emerging-rare-entities.html)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 0.76 MB
- **Size of the generated dataset:** 1.66 MB
- **Total amount of disk used:** 2.43 MB

### Dataset Summary

WNUT 17: Emerging and Rare entity recognition

This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions.
Named entities form the basis of many modern approaches to other tasks (like event clustering and summarisation),
but recall on them is a real problem in noisy text - even among annotators. This drop tends to be due to novel entities and surface forms.
Take for example the tweet “so.. kktny in 30 mins?” - even human experts find entity kktny hard to detect and resolve.
This task will evaluate the ability to detect and classify novel, emerging, singleton named entities in noisy text.

The goal of this task is to provide a definition of emerging and of rare entities, and based on that, also datasets for detecting these entities.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

### Data Instances

- **Size of downloaded dataset files:** 0.76 MB
- **Size of the generated dataset:** 1.66 MB
- **Total amount of disk used:** 2.43 MB

An example of 'train' looks as follows.
```
{
    "id": "0",
    "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
    "tokens": ["@paulwalk", "It", "'s", "the", "view", "from", "where", "I", "'m", "living", "for", "two", "weeks", ".", "Empire", "State", "Building", "=", "ESB", ".", "Pretty", "bad", "storm", "here", "last", "evening", "."]
}
```

### Data Fields

The data fields are the same among all splits:
- `id` (`string`): ID of the example.
- `tokens` (`list` of `string`): Tokens of the example text.
- `ner_tags` (`list` of class labels): NER tags of the tokens (using IOB2 format), with possible values:
  - 0: `O`
  - 1: `B-corporation`
  - 2: `I-corporation`
  - 3: `B-creative-work`
  - 4: `I-creative-work`
  - 5: `B-group`
  - 6: `I-group`
  - 7: `B-location`
  - 8: `I-location`
  - 9: `B-person`
  - 10: `I-person`
  - 11: `B-product`
  - 12: `I-product`

### Data Splits

|train|validation|test|
|----:|---------:|---:|
| 3394|      1009|1287|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
@inproceedings{derczynski-etal-2017-results,
    title = "Results of the {WNUT}2017 Shared Task on Novel and Emerging Entity Recognition",
    author = "Derczynski, Leon  and
      Nichols, Eric  and
      van Erp, Marieke  and
      Limsopatham, Nut",
    booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/W17-4418",
    doi = "10.18653/v1/W17-4418",
    pages = "140--147",
    abstract = "This shared task focuses on identifying unusual, previously-unseen entities in the context of emerging discussions.
                Named entities form the basis of many modern approaches to other tasks (like event clustering and summarization),
                but recall on them is a real problem in noisy text - even among annotators.
                This drop tends to be due to novel entities and surface forms.
                Take for example the tweet {``}so.. kktny in 30 mins?!{''} {--} even human experts find the entity {`}kktny{'}
                hard to detect and resolve. The goal of this task is to provide a definition of emerging and of rare entities,
                and based on that, also datasets for detecting these entities. The task as described in this paper evaluated the
                ability of participating entries to detect and classify novel and emerging named entities in noisy text.",
}

```


### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@stefan-it](https://github.com/stefan-it), [@lewtun](https://github.com/lewtun), [@jplu](https://github.com/jplu) for adding this dataset.