--- language: - en dataset_info: features: - name: prompt dtype: string - name: answer dtype: string splits: - name: spell num_bytes: 465046 num_examples: 1000 - name: spell_inverse num_bytes: 446046 num_examples: 1000 - name: contains_char num_bytes: 424176 num_examples: 1000 - name: contains_word num_bytes: 530494 num_examples: 1000 - name: orth num_bytes: 607118 num_examples: 1000 - name: sem num_bytes: 608098 num_examples: 1000 - name: ins_char num_bytes: 560474 num_examples: 1000 - name: ins_word num_bytes: 775597 num_examples: 1000 - name: del_char num_bytes: 513247 num_examples: 1000 - name: del_word num_bytes: 689114 num_examples: 1000 - name: sub_char num_bytes: 532364 num_examples: 1000 - name: sub_word num_bytes: 743529 num_examples: 1000 - name: swap_char num_bytes: 470394 num_examples: 1000 - name: swap_word num_bytes: 675168 num_examples: 1000 download_size: 962103 dataset_size: 8040865 configs: - config_name: default data_files: - split: spell path: data/spell-* - split: spell_inverse path: data/spell_inverse-* - split: contains_char path: data/contains_char-* - split: contains_word path: data/contains_word-* - split: orth path: data/orth-* - split: sem path: data/sem-* - split: ins_char path: data/ins_char-* - split: ins_word path: data/ins_word-* - split: del_char path: data/del_char-* - split: del_word path: data/del_word-* - split: sub_char path: data/sub_char-* - split: sub_word path: data/sub_word-* - split: swap_char path: data/swap_char-* - split: swap_word path: data/swap_word-* --- # CUTE Here is the CUTE benchmark, a benchmark designed for testing LLM's ability to understand the characters within their tokens. To use this dataset as we did, make sure to use ``` tokenizer.apply_chat_template ``` on the prompt, and then add ``` Answer: " ``` afterwards to the resulting string. For smaller LLMs, you may need to do some post-processing on the final answer. You can also check out our implementation at: https://github.com/Leukas/cute