File size: 5,046 Bytes
a21b4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27cb585
 
 
a21b4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27cb585
a21b4e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to MSRA NER Dataset"""

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{levow2006third,
  author    = {Gina{-}Anne Levow},
  title     = {The Third International Chinese Language Processing Bakeoff: Word
               Segmentation and Named Entity Recognition},
  booktitle = {SIGHAN@COLING/ACL},
  pages     = {108--117},
  publisher = {Association for Computational Linguistics},
  year      = {2006}
}
"""

_DESCRIPTION = """\
The Third International Chinese Language
Processing Bakeoff was held in Spring
2006 to assess the state of the art in two
important tasks: word segmentation and
named entity recognition. Twenty-nine
groups submitted result sets in the two
tasks across two tracks and a total of five
corpora. We found strong results in both
tasks as well as continuing challenges.

MSRA NER is one of the provided dataset.
There are three types of NE, PER (person),
ORG (organization) and LOC (location).
The dataset is in the BIO scheme.

For more details see https://faculty.washington.edu/levow/papers/sighan06.pdf
"""

_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/MSRA/"
_TRAINING_FILE = "msra_train_bio.txt"
_TEST_FILE = "msra_test_bio.txt"


class MsraNerConfig(datasets.BuilderConfig):
    """BuilderConfig for MsraNer"""

    def __init__(self, **kwargs):
        """BuilderConfig for MSRA NER.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(MsraNerConfig, self).__init__(**kwargs)


class MsraNer(datasets.GeneratorBasedBuilder):
    """MSRA NER dataset."""

    BUILDER_CONFIGS = [
        MsraNerConfig(name="msra_ner", version=datasets.Version("1.0.0"), description="MSRA NER dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-PER",
                                "I-PER",
                                "B-ORG",
                                "I-ORG",
                                "B-LOC",
                                "I-LOC",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://www.microsoft.com/en-us/download/details.aspx?id=52531",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                line_stripped = line.strip()
                if line_stripped == "":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line_stripped.split("\t")
                    if len(splits) == 1:
                        splits.append("O")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1])
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }