Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Chinese
Size:
10K<n<100K
License:
File size: 5,046 Bytes
a21b4e9 27cb585 a21b4e9 27cb585 a21b4e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to MSRA NER Dataset"""
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{levow2006third,
author = {Gina{-}Anne Levow},
title = {The Third International Chinese Language Processing Bakeoff: Word
Segmentation and Named Entity Recognition},
booktitle = {SIGHAN@COLING/ACL},
pages = {108--117},
publisher = {Association for Computational Linguistics},
year = {2006}
}
"""
_DESCRIPTION = """\
The Third International Chinese Language
Processing Bakeoff was held in Spring
2006 to assess the state of the art in two
important tasks: word segmentation and
named entity recognition. Twenty-nine
groups submitted result sets in the two
tasks across two tracks and a total of five
corpora. We found strong results in both
tasks as well as continuing challenges.
MSRA NER is one of the provided dataset.
There are three types of NE, PER (person),
ORG (organization) and LOC (location).
The dataset is in the BIO scheme.
For more details see https://faculty.washington.edu/levow/papers/sighan06.pdf
"""
_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/MSRA/"
_TRAINING_FILE = "msra_train_bio.txt"
_TEST_FILE = "msra_test_bio.txt"
class MsraNerConfig(datasets.BuilderConfig):
"""BuilderConfig for MsraNer"""
def __init__(self, **kwargs):
"""BuilderConfig for MSRA NER.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(MsraNerConfig, self).__init__(**kwargs)
class MsraNer(datasets.GeneratorBasedBuilder):
"""MSRA NER dataset."""
BUILDER_CONFIGS = [
MsraNerConfig(name="msra_ner", version=datasets.Version("1.0.0"), description="MSRA NER dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
]
)
),
}
),
supervised_keys=None,
homepage="https://www.microsoft.com/en-us/download/details.aspx?id=52531",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
line_stripped = line.strip()
if line_stripped == "":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
splits = line_stripped.split("\t")
if len(splits) == 1:
splits.append("O")
tokens.append(splits[0])
ner_tags.append(splits[1])
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
|