Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K<n<100K
License:
File size: 6,120 Bytes
c6cb8d5 ca83386 c6cb8d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset"""
import os
from zipfile import ZipFile
import datasets
_CITATION = """\
@InProceedings{li2017dailydialog,
author = {Li, Yanran and Su, Hui and Shen, Xiaoyu and Li, Wenjie and Cao, Ziqiang and Niu, Shuzi},
title = {DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset},
booktitle = {Proceedings of The 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)},
year = {2017}
}
"""
_DESCRIPTION = """\
We develop a high-quality multi-turn dialog dataset, DailyDialog, which is intriguing in several aspects.
The language is human-written and less noisy. The dialogues in the dataset reflect our daily communication way
and cover various topics about our daily life. We also manually label the developed dataset with communication
intention and emotion information. Then, we evaluate existing approaches on DailyDialog dataset and hope it
benefit the research field of dialog systems.
"""
_URL = "http://yanran.li/files/ijcnlp_dailydialog.zip"
act_label = {
"0": "__dummy__", # Added to be compatible out-of-the-box with datasets.ClassLabel
"1": "inform",
"2": "question",
"3": "directive",
"4": "commissive",
}
emotion_label = {
"0": "no emotion",
"1": "anger",
"2": "disgust",
"3": "fear",
"4": "happiness",
"5": "sadness",
"6": "surprise",
}
class DailyDialog(datasets.GeneratorBasedBuilder):
"""DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset"""
VERSION = datasets.Version("1.0.0")
__EOU__ = "__eou__"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"dialog": datasets.features.Sequence(datasets.Value("string")),
"act": datasets.features.Sequence(datasets.ClassLabel(names=list(act_label.values()))),
"emotion": datasets.features.Sequence(datasets.ClassLabel(names=list(emotion_label.values()))),
}
),
supervised_keys=None,
homepage="http://yanran.li/dailydialog",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators."""
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "ijcnlp_dailydialog")
# The splits are nested inside the zip
for name in ("train", "validation", "test"):
zip_fpath = os.path.join(data_dir, f"{name}.zip")
with ZipFile(zip_fpath) as zip_file:
zip_file.extractall(path=data_dir)
zip_file.close()
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file_path": os.path.join(data_dir, "train", "dialogues_train.txt"),
"act_path": os.path.join(data_dir, "train", "dialogues_act_train.txt"),
"emotion_path": os.path.join(data_dir, "train", "dialogues_emotion_train.txt"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file_path": os.path.join(data_dir, "test", "dialogues_test.txt"),
"act_path": os.path.join(data_dir, "test", "dialogues_act_test.txt"),
"emotion_path": os.path.join(data_dir, "test", "dialogues_emotion_test.txt"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"file_path": os.path.join(data_dir, "validation", "dialogues_validation.txt"),
"act_path": os.path.join(data_dir, "validation", "dialogues_act_validation.txt"),
"emotion_path": os.path.join(data_dir, "validation", "dialogues_emotion_validation.txt"),
"split": "dev",
},
),
]
def _generate_examples(self, file_path, act_path, emotion_path, split):
"""Yields examples."""
# Yields (key, example) tuples from the dataset
with open(file_path, "r", encoding="utf-8") as f, open(act_path, "r", encoding="utf-8") as act, open(
emotion_path, "r", encoding="utf-8"
) as emotion:
for i, (line_f, line_act, line_emotion) in enumerate(zip(f, act, emotion)):
if len(line_f.strip()) == 0:
break
dialog = line_f.split(self.__EOU__)[:-1]
act = line_act.split(" ")[:-1]
emotion = line_emotion.split(" ")[:-1]
assert len(dialog) == len(act) == len(emotion), "Different turns btw dialogue & emotion & action"
yield f"{split}-{i}", {
"dialog": dialog,
"act": [act_label[x] for x in act],
"emotion": [emotion_label[x] for x in emotion],
}
|