File size: 5,996 Bytes
7a9fdf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Mathematics Dataset
This dataset code generates mathematical question and answer pairs, from a range
of question types at roughly school-level difficulty. This is designed to test
the mathematical learning and algebraic reasoning skills of learning models.
Original paper: [Analysing Mathematical
Reasoning Abilities of Neural Models](https://openreview.net/pdf?id=H1gR5iR5FX)
(Saxton, Grefenstette, Hill, Kohli).
## Example questions
```
Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
Answer: 4
Question: Calculate -841880142.544 + 411127.
Answer: -841469015.544
Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
Answer: 54*a - 30
Question: Let e(l) = l - 6. Is 2 a factor of both e(9) and 2?
Answer: False
Question: Let u(n) = -n**3 - n**2. Let e(c) = -2*c**3 + c. Let l(j) = -118*e(j) + 54*u(j). What is the derivative of l(a)?
Answer: 546*a**2 - 108*a - 118
Question: Three letters picked without replacement from qqqkkklkqkkk. Give prob of sequence qql.
Answer: 1/110
```
## Pre-generated data
[Pre-generated files](https://console.cloud.google.com/storage/browser/mathematics-dataset)
### Version 1.0
This is the version released with the original paper. It contains 2 million
(question, answer) pairs per module, with questions limited to 160 characters in
length, and answers to 30 characters in length. Note the training data for each
question type is split into "train-easy", "train-medium", and "train-hard". This
allows training models via a curriculum. The data can also be mixed together
uniformly from these training datasets to obtain the results reported in the
paper. Categories:
* **algebra** (linear equations, polynomial roots, sequences)
* **arithmetic** (pairwise operations and mixed expressions, surds)
* **calculus** (differentiation)
* **comparison** (closest numbers, pairwise comparisons, sorting)
* **measurement** (conversion, working with time)
* **numbers** (base conversion, remainders, common divisors and multiples,
primality, place value, rounding numbers)
* **polynomials** (addition, simplification, composition, evaluating, expansion)
* **probability** (sampling without replacement)
## Getting the source
### PyPI
The easiest way to get the source is to use pip:
```shell
$ pip install mathematics_dataset
```
### From GitHub
Alternately you can get the source by cloning the mathematics_dataset
repository:
```shell
$ git clone https://github.com/deepmind/mathematics_dataset
$ pip install --upgrade mathematics_dataset/
```
## Generating examples
Generated examples can be printed to stdout via the `generate` script. For
example:
```shell
python -m mathematics_dataset.generate --filter=linear_1d
```
will generate example (question, answer) pairs for solving linear equations in
one variable.
We've also included `generate_to_file.py` as an example of how to write the
generated examples to text files. You can use this directly, or adapt it for
your generation and training needs.
## Dataset Metadata
The following table is necessary for this dataset to be indexed by search
engines such as <a href="https://g.co/datasetsearch">Google Dataset Search</a>.
<div itemscope itemtype="http://schema.org/Dataset">
<table>
<tr>
<th>property</th>
<th>value</th>
</tr>
<tr>
<td>name</td>
<td><code itemprop="name">Mathematics Dataset</code></td>
</tr>
<tr>
<td>url</td>
<td><code itemprop="url">https://github.com/deepmind/mathematics_dataset</code></td>
</tr>
<tr>
<td>sameAs</td>
<td><code itemprop="sameAs">https://github.com/deepmind/mathematics_dataset</code></td>
</tr>
<tr>
<td>description</td>
<td><code itemprop="description">This dataset consists of mathematical question and answer pairs, from a range
of question types at roughly school-level difficulty. This is designed to test
the mathematical learning and algebraic reasoning skills of learning models.\n
\n
## Example questions\n
\n
```\n
Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.\n
Answer: 4\n
\n
Question: Calculate -841880142.544 + 411127.\n
Answer: -841469015.544\n
\n
Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).\n
Answer: 54*a - 30\n
```\n
\n
It contains 2 million
(question, answer) pairs per module, with questions limited to 160 characters in
length, and answers to 30 characters in length. Note the training data for each
question type is split into "train-easy", "train-medium", and "train-hard". This
allows training models via a curriculum. The data can also be mixed together
uniformly from these training datasets to obtain the results reported in the
paper. Categories:\n
\n
* **algebra** (linear equations, polynomial roots, sequences)\n
* **arithmetic** (pairwise operations and mixed expressions, surds)\n
* **calculus** (differentiation)\n
* **comparison** (closest numbers, pairwise comparisons, sorting)\n
* **measurement** (conversion, working with time)\n
* **numbers** (base conversion, remainders, common divisors and multiples,\n
primality, place value, rounding numbers)\n
* **polynomials** (addition, simplification, composition, evaluating, expansion)\n
* **probability** (sampling without replacement)</code></td>
</tr>
<tr>
<td>provider</td>
<td>
<div itemscope itemtype="http://schema.org/Organization" itemprop="provider">
<table>
<tr>
<th>property</th>
<th>value</th>
</tr>
<tr>
<td>name</td>
<td><code itemprop="name">DeepMind</code></td>
</tr>
<tr>
<td>sameAs</td>
<td><code itemprop="sameAs">https://en.wikipedia.org/wiki/DeepMind</code></td>
</tr>
</table>
</div>
</td>
</tr>
<tr>
<td>citation</td>
<td><code itemprop="citation">https://identifiers.org/arxiv:1904.01557</code></td>
</tr>
</table>
</div>
|