covid_dialogue / covid_dialogue.py
Clémentine
init
e5edb76
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Covid Dialog dataset in English and Chinese"""
import copy
import os
import re
import textwrap
import datasets
# BibTeX citation
_CITATION = """\
@article{ju2020CovidDialog,
title={CovidDialog: Medical Dialogue Datasets about COVID-19},
author={Ju, Zeqian and Chakravorty, Subrato and He, Xuehai and Chen, Shu and Yang, Xingyi and Xie, Pengtao},
journal={ https://github.com/UCSD-AI4H/COVID-Dialogue},
year={2020}
}
"""
# Official description of the dataset
_DESCRIPTION = textwrap.dedent(
"""
COVID-Dialogue-Dataset is amedical dialogue dataset about COVID-19 and other types of pneumonia.
Patients who are concerned that they may be infected by COVID-19 or other pneumonia consult doctors and doctors provide advice.
There are 603 consultations in English and 1393 consultations in Chinese.
"""
)
# Link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/UCSD-AI4H/COVID-Dialogue"
_LICENSE = ""
import datasets
import os
import json
class CovidDialogueHelm(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default", version=datasets.Version("1.0.0"), description=_DESCRIPTION)]
def _info(self):
features = datasets.Features(
{
"query": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=f"Covid Dialogue dataset, as preprocessed and shuffled in HELM",
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
test_target = dl_manager.download("test.source")
test_source = dl_manager.download("test.source")
train_source = dl_manager.download("train.source")
train_target = dl_manager.download("train.target")
val_source = dl_manager.download("val.source")
val_target = dl_manager.download("val.target")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"target": train_target, "source": train_source},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"target": val_target, "source": val_source},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"target": test_target, "source": test_source},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, source, target):
with open(source, encoding="utf-8") as f_source:
with open(target, encoding="utf-8") as f_target:
for idx, (s, t) in enumerate(zip(f_source, f_target)):
yield idx, {"query": s, "answer": t}