|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Covid Dialog dataset in English and Chinese""" |
|
|
|
|
|
import copy |
|
import os |
|
import re |
|
import textwrap |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@article{ju2020CovidDialog, |
|
title={CovidDialog: Medical Dialogue Datasets about COVID-19}, |
|
author={Ju, Zeqian and Chakravorty, Subrato and He, Xuehai and Chen, Shu and Yang, Xingyi and Xie, Pengtao}, |
|
journal={ https://github.com/UCSD-AI4H/COVID-Dialogue}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = textwrap.dedent( |
|
""" |
|
COVID-Dialogue-Dataset is amedical dialogue dataset about COVID-19 and other types of pneumonia. |
|
Patients who are concerned that they may be infected by COVID-19 or other pneumonia consult doctors and doctors provide advice. |
|
There are 603 consultations in English and 1393 consultations in Chinese. |
|
""" |
|
) |
|
|
|
|
|
_HOMEPAGE = "https://github.com/UCSD-AI4H/COVID-Dialogue" |
|
|
|
_LICENSE = "" |
|
|
|
|
|
import datasets |
|
import os |
|
import json |
|
|
|
|
|
class CovidDialogueHelm(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default", version=datasets.Version("1.0.0"), description=_DESCRIPTION)] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"query": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=f"Covid Dialogue dataset, as preprocessed and shuffled in HELM", |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
test_target = dl_manager.download("test.source") |
|
test_source = dl_manager.download("test.source") |
|
train_source = dl_manager.download("train.source") |
|
train_target = dl_manager.download("train.target") |
|
val_source = dl_manager.download("val.source") |
|
val_target = dl_manager.download("val.target") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"target": train_target, "source": train_source}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"target": val_target, "source": val_source}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"target": test_target, "source": test_source}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, source, target): |
|
with open(source, encoding="utf-8") as f_source: |
|
with open(target, encoding="utf-8") as f_target: |
|
for idx, (s, t) in enumerate(zip(f_source, f_target)): |
|
yield idx, {"query": s, "answer": t} |
|
|
|
|