Update ICEWS14.py
Browse files- ICEWS14.py +363 -362
ICEWS14.py
CHANGED
@@ -1,363 +1,364 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
-
"""
|
16 |
-
TL;DR: The datasets for temporal knowledge graph reasoning task.
|
17 |
-
|
18 |
-
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
19 |
-
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
20 |
-
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
21 |
-
|
22 |
-
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
|
23 |
-
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
24 |
-
- Please refer to the original paper for more details.
|
25 |
-
|
26 |
-
|
27 |
-
"""
|
28 |
-
from dataclasses import dataclass
|
29 |
-
from typing import List, Dict, Set, Optional, TypedDict
|
30 |
-
import json
|
31 |
-
import os
|
32 |
-
|
33 |
-
import datasets
|
34 |
-
|
35 |
-
|
36 |
-
_CITATION = """\
|
37 |
-
@inproceedings{
|
38 |
-
xueyuan2023tflex,
|
39 |
-
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
|
40 |
-
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
|
41 |
-
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
|
42 |
-
year={2023},
|
43 |
-
url={https://openreview.net/forum?id=oaGdsgB18L}
|
44 |
-
}\
|
45 |
-
"""
|
46 |
-
|
47 |
-
# TODO: Add description of the dataset here
|
48 |
-
_DESCRIPTION = """\
|
49 |
-
TL;DR: The datasets for temporal knowledge graph reasoning task.
|
50 |
-
|
51 |
-
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
52 |
-
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
53 |
-
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
54 |
-
|
55 |
-
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
|
56 |
-
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
57 |
-
- Please refer to the original paper for more details.
|
58 |
-
"""
|
59 |
-
|
60 |
-
_HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX"
|
61 |
-
|
62 |
-
_LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)"
|
63 |
-
|
64 |
-
query_name_to_args: Dict[str, List[str]] = {
|
65 |
-
# 1. 1-hop Pe and Pt, manually
|
66 |
-
"Pe": ['e1', 'r1', 't1'],
|
67 |
-
"Pt": ['e1', 'r1', 'e2'],
|
68 |
-
# 2. entity multi-hop
|
69 |
-
"Pe2": ['e1', 'r1', 't1', 'r2', 't2'],
|
70 |
-
"Pe3": ['e1', 'r1', 't1', 'r2', 't2', 'r3', 't3'],
|
71 |
-
# 3. time multi-hop
|
72 |
-
"aPt": ['s', 'r', 'o'],
|
73 |
-
"bPt": ['s', 'r', 'o'],
|
74 |
-
"Pt_sPe": ['e1', 'r1', 't1', 'r2', 'e2'],
|
75 |
-
"Pt_oPe": ['e1', 'r1', 'e2', 'r2', 't1'],
|
76 |
-
"Pe_Pt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
77 |
-
"Pe_aPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
78 |
-
"Pe_bPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
79 |
-
"Pe_nPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
80 |
-
"Pt_sPe_Pt": ['s1', 'r1', 's2', 'r2', 'o1', 'r3', 'o2'],
|
81 |
-
"Pt_oPe_Pt": ['s1', 'r1', 's2', 'r2', 's3', 'r3', 'o1'],
|
82 |
-
# 4. entity and & time and
|
83 |
-
"e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
84 |
-
"e3i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
|
85 |
-
"t2i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
86 |
-
"t3i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
|
87 |
-
# 5. complex time and
|
88 |
-
"e2i_Pe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
89 |
-
"Pe_e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
90 |
-
"Pt_se2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 'e3'],
|
91 |
-
"Pt_oe2i": ['e1', 'r1', 'e2', 'r2', 't1', 'e3', 'r3', 't2'],
|
92 |
-
"t2i_Pe": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
93 |
-
"Pe_t2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
94 |
-
"Pe_at2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
95 |
-
"Pe_bt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
96 |
-
"Pe_nt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
97 |
-
"between": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
98 |
-
# 5. entity not
|
99 |
-
"e2i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
100 |
-
"e3i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
|
101 |
-
"Pe_e2i_Pe_NPe": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
102 |
-
"e2i_NPe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
103 |
-
"e2i_PeN": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
104 |
-
# 6. time not
|
105 |
-
"t2i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
106 |
-
"t3i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
|
107 |
-
"Pe_t2i_PtPe_NPt": ['e1', 'r1', 'e2', 'r2', 't2', 'r3', 'e3', 'e4', 'r4', 'e5'],
|
108 |
-
"t2i_NPt": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
109 |
-
"t2i_PtN": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
110 |
-
# 7. entity union & time union
|
111 |
-
"e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
112 |
-
"Pe_e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
113 |
-
"t2u": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
114 |
-
"Pe_t2u": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
115 |
-
}
|
116 |
-
query_structures: Dict[str, str] = {
|
117 |
-
# 1. 1-hop Pe and Pt, manually
|
118 |
-
"Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)", # 1p
|
119 |
-
"Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)", # 1p, temporal
|
120 |
-
# 2. entity multi-hop
|
121 |
-
"Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)", # 2p
|
122 |
-
"Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)", # 3p
|
123 |
-
# 3. time multi-hop
|
124 |
-
"aPt": "def aPt(s, r, o): return after(Pt(s, r, o))", # a for after
|
125 |
-
"bPt": "def bPt(s, r, o): return before(Pt(s, r, o))", # b for before
|
126 |
-
"Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
|
127 |
-
"Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
|
128 |
-
"Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
|
129 |
-
"Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
|
130 |
-
"Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))", # at
|
131 |
-
"Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))", # a for after
|
132 |
-
"Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))", # b for before
|
133 |
-
"Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))", # n for next
|
134 |
-
"Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)",
|
135 |
-
"Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))",
|
136 |
-
# 4. entity and & time and
|
137 |
-
"e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2i
|
138 |
-
"e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))", # 3i
|
139 |
-
"t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2i
|
140 |
-
"t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))", # t-3i
|
141 |
-
# 5. complex time and
|
142 |
-
"e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))", # pi
|
143 |
-
"Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)", # ip
|
144 |
-
"Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
|
145 |
-
"Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
|
146 |
-
"Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
|
147 |
-
"Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
|
148 |
-
"t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))", # t-pi
|
149 |
-
"Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))", # t-ip
|
150 |
-
"Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))",
|
151 |
-
"Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))",
|
152 |
-
"Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))",
|
153 |
-
"between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))", # between(t1, t2) == after t1 and before t2
|
154 |
-
# 5. entity not
|
155 |
-
"e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))", # 2in
|
156 |
-
"e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))", # 3in
|
157 |
-
"Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)", # inp
|
158 |
-
"e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))", # pin
|
159 |
-
"e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))", # pni = e2i_N(Pe(e1, r1, t1), r2, t2, e2, r3, t3)
|
160 |
-
# 6. time not
|
161 |
-
"t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))", # t-2in
|
162 |
-
"t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))", # t-3in
|
163 |
-
"Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))", # t-inp
|
164 |
-
"t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))", # t-pin
|
165 |
-
"t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))", # t-pni
|
166 |
-
# 7. entity union & time union
|
167 |
-
"e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2u
|
168 |
-
"Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)", # up
|
169 |
-
"t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2u
|
170 |
-
"Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))", # t-up
|
171 |
-
# 8. union-DM
|
172 |
-
"e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))", # 2u-DM
|
173 |
-
"Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)", # up-DM
|
174 |
-
"t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))", # t-2u-DM
|
175 |
-
"Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))", # t-up-DM
|
176 |
-
# 9. union-DNF
|
177 |
-
"e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)", # 2u_DNF
|
178 |
-
"Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)", # up_DNF
|
179 |
-
"t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)", # t-2u_DNF
|
180 |
-
"Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))", # t-up_DNF
|
181 |
-
}
|
182 |
-
union_query_structures: List[str] = [
|
183 |
-
"e2u", "Pe_e2u", # 2u, up
|
184 |
-
"t2u", "Pe_t2u", # t-2u, t-up
|
185 |
-
]
|
186 |
-
train_query_structures: List[str] = [
|
187 |
-
# entity
|
188 |
-
"Pe", "Pe2", "Pe3", "e2i", "e3i", # 1p, 2p, 3p, 2i, 3i
|
189 |
-
"e2i_NPe", "e2i_PeN", "Pe_e2i_Pe_NPe", "e2i_N", "e3i_N", # npi, pni, inp, 2in, 3in
|
190 |
-
# time
|
191 |
-
"Pt", "Pt_lPe", "Pt_rPe", "Pe_Pt", "Pe_aPt", "Pe_bPt", "Pe_nPt", # t-1p, t-2p
|
192 |
-
"t2i", "t3i", "Pt_le2i", "Pt_re2i", "Pe_t2i", "Pe_at2i", "Pe_bt2i", "Pe_nt2i", "between", # t-2i, t-3i
|
193 |
-
"t2i_NPt", "t2i_PtN", "Pe_t2i_PtPe_NPt", "t2i_N", "t3i_N", # t-npi, t-pni, t-inp, t-2in, t-3in
|
194 |
-
]
|
195 |
-
test_query_structures: List[str] = train_query_structures + [
|
196 |
-
# entity
|
197 |
-
"e2i_Pe", "Pe_e2i", # pi, ip
|
198 |
-
"e2u", "Pe_e2u", # 2u, up
|
199 |
-
# time
|
200 |
-
"t2i_Pe", "Pe_t2i", # t-pi, t-ip
|
201 |
-
"t2u", "Pe_t2u", # t-2u, t-up
|
202 |
-
# union-DM
|
203 |
-
"e2u_DM", "Pe_e2u_DM", # 2u-DM, up-DM
|
204 |
-
"t2u_DM", "Pe_t2u_DM", # t-2u-DM, t-up-DM
|
205 |
-
]
|
206 |
-
|
207 |
-
|
208 |
-
# TODO: Add link to the official dataset URLs here
|
209 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
210 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
211 |
-
_HOST = "https://huggingface.co"
|
212 |
-
_AUTHOR = "
|
213 |
-
_DATASET = "ICEWS14"
|
214 |
-
_URLS = {
|
215 |
-
name: f"{_HOST}/{_AUTHOR}/{_DATASET}/zips/{name}.zip"
|
216 |
-
for name in ["all"] + list(query_name_to_args.keys())
|
217 |
-
}
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
saved in
|
223 |
-
|
224 |
-
iterating
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
#
|
245 |
-
#
|
246 |
-
|
247 |
-
|
248 |
-
#
|
249 |
-
#
|
250 |
-
|
251 |
-
|
252 |
-
#
|
253 |
-
# data = datasets.load_dataset('my_dataset', '
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
"
|
278 |
-
"
|
279 |
-
"
|
280 |
-
"
|
281 |
-
"
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"
|
291 |
-
"
|
292 |
-
"
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
#
|
306 |
-
#
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
"
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
"
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
"
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
#
|
339 |
-
#
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
"
|
350 |
-
"
|
351 |
-
"
|
352 |
-
"
|
353 |
-
"
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
"
|
359 |
-
"
|
360 |
-
"
|
361 |
-
"
|
362 |
-
"
|
|
|
363 |
}
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""
|
16 |
+
TL;DR: The datasets for temporal knowledge graph reasoning task.
|
17 |
+
|
18 |
+
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
19 |
+
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
20 |
+
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
21 |
+
|
22 |
+
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
|
23 |
+
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
24 |
+
- Please refer to the original paper for more details.
|
25 |
+
|
26 |
+
|
27 |
+
"""
|
28 |
+
from dataclasses import dataclass
|
29 |
+
from typing import List, Dict, Set, Optional, TypedDict
|
30 |
+
import json
|
31 |
+
import os
|
32 |
+
|
33 |
+
import datasets
|
34 |
+
|
35 |
+
|
36 |
+
_CITATION = """\
|
37 |
+
@inproceedings{
|
38 |
+
xueyuan2023tflex,
|
39 |
+
title={TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph},
|
40 |
+
author={Lin Xueyuan and Haihong E and Chengjin Xu and Gengxian Zhou and Haoran Luo and Tianyi Hu and Fenglong Su and Ningyuan Li and Mingzhi Sun},
|
41 |
+
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
|
42 |
+
year={2023},
|
43 |
+
url={https://openreview.net/forum?id=oaGdsgB18L}
|
44 |
+
}\
|
45 |
+
"""
|
46 |
+
|
47 |
+
# TODO: Add description of the dataset here
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
TL;DR: The datasets for temporal knowledge graph reasoning task.
|
50 |
+
|
51 |
+
[[Github]](https://github.com/LinXueyuanStdio/TFLEX)
|
52 |
+
[[OpenReview]](https://openreview.net/forum?id=oaGdsgB18L)
|
53 |
+
[[arXiv]](https://arxiv.org/abs/2205.14307)
|
54 |
+
|
55 |
+
- Built over ICEWS and GDELT, which are widly used benchmarks in TKGC.
|
56 |
+
- First introduced in paper "TFLEX: Temporal Feature-Logic Embedding Framework for Complex Reasoning over Temporal Knowledge Graph"
|
57 |
+
- Please refer to the original paper for more details.
|
58 |
+
"""
|
59 |
+
|
60 |
+
_HOMEPAGE = "https://github.com/LinXueyuanStdio/TFLEX"
|
61 |
+
|
62 |
+
_LICENSE = "[Apache License 2.0](https://github.com/LinXueyuanStdio/TFLEX/blob/main/LICENSE)"
|
63 |
+
|
64 |
+
query_name_to_args: Dict[str, List[str]] = {
|
65 |
+
# 1. 1-hop Pe and Pt, manually
|
66 |
+
"Pe": ['e1', 'r1', 't1'],
|
67 |
+
"Pt": ['e1', 'r1', 'e2'],
|
68 |
+
# 2. entity multi-hop
|
69 |
+
"Pe2": ['e1', 'r1', 't1', 'r2', 't2'],
|
70 |
+
"Pe3": ['e1', 'r1', 't1', 'r2', 't2', 'r3', 't3'],
|
71 |
+
# 3. time multi-hop
|
72 |
+
"aPt": ['s', 'r', 'o'],
|
73 |
+
"bPt": ['s', 'r', 'o'],
|
74 |
+
"Pt_sPe": ['e1', 'r1', 't1', 'r2', 'e2'],
|
75 |
+
"Pt_oPe": ['e1', 'r1', 'e2', 'r2', 't1'],
|
76 |
+
"Pe_Pt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
77 |
+
"Pe_aPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
78 |
+
"Pe_bPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
79 |
+
"Pe_nPt": ['e1', 'r1', 'e2', 'r2', 'e3'],
|
80 |
+
"Pt_sPe_Pt": ['s1', 'r1', 's2', 'r2', 'o1', 'r3', 'o2'],
|
81 |
+
"Pt_oPe_Pt": ['s1', 'r1', 's2', 'r2', 's3', 'r3', 'o1'],
|
82 |
+
# 4. entity and & time and
|
83 |
+
"e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
84 |
+
"e3i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
|
85 |
+
"t2i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
86 |
+
"t3i": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
|
87 |
+
# 5. complex time and
|
88 |
+
"e2i_Pe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
89 |
+
"Pe_e2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
90 |
+
"Pt_se2i": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 'e3'],
|
91 |
+
"Pt_oe2i": ['e1', 'r1', 'e2', 'r2', 't1', 'e3', 'r3', 't2'],
|
92 |
+
"t2i_Pe": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
93 |
+
"Pe_t2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
94 |
+
"Pe_at2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
95 |
+
"Pe_bt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
96 |
+
"Pe_nt2i": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
97 |
+
"between": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
98 |
+
# 5. entity not
|
99 |
+
"e2i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
100 |
+
"e3i_N": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'e3', 'r3', 't3'],
|
101 |
+
"Pe_e2i_Pe_NPe": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
102 |
+
"e2i_NPe": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
103 |
+
"e2i_PeN": ['e1', 'r1', 't1', 'r2', 't2', 'e2', 'r3', 't3'],
|
104 |
+
# 6. time not
|
105 |
+
"t2i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
106 |
+
"t3i_N": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4', 'e5', 'r3', 'e6'],
|
107 |
+
"Pe_t2i_PtPe_NPt": ['e1', 'r1', 'e2', 'r2', 't2', 'r3', 'e3', 'e4', 'r4', 'e5'],
|
108 |
+
"t2i_NPt": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
109 |
+
"t2i_PtN": ['e1', 'r1', 't1', 'r2', 'e2', 'e3', 'r3', 'e4'],
|
110 |
+
# 7. entity union & time union
|
111 |
+
"e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2'],
|
112 |
+
"Pe_e2u": ['e1', 'r1', 't1', 'e2', 'r2', 't2', 'r3', 't3'],
|
113 |
+
"t2u": ['e1', 'r1', 'e2', 'e3', 'r2', 'e4'],
|
114 |
+
"Pe_t2u": ['e1', 'r1', 'e2', 'r2', 'e3', 'e4', 'r3', 'e5'],
|
115 |
+
}
|
116 |
+
query_structures: Dict[str, str] = {
|
117 |
+
# 1. 1-hop Pe and Pt, manually
|
118 |
+
"Pe": "def Pe(e1, r1, t1): return Pe(e1, r1, t1)", # 1p
|
119 |
+
"Pt": "def Pt(e1, r1, e2): return Pt(e1, r1, e2)", # 1p, temporal
|
120 |
+
# 2. entity multi-hop
|
121 |
+
"Pe2": "def Pe2(e1, r1, t1, r2, t2): return Pe(Pe(e1, r1, t1), r2, t2)", # 2p
|
122 |
+
"Pe3": "def Pe3(e1, r1, t1, r2, t2, r3, t3): return Pe(Pe(Pe(e1, r1, t1), r2, t2), r3, t3)", # 3p
|
123 |
+
# 3. time multi-hop
|
124 |
+
"aPt": "def aPt(s, r, o): return after(Pt(s, r, o))", # a for after
|
125 |
+
"bPt": "def bPt(s, r, o): return before(Pt(s, r, o))", # b for before
|
126 |
+
"Pt_lPe": "def Pt_lPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
|
127 |
+
"Pt_rPe": "def Pt_rPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
|
128 |
+
"Pt_sPe": "def Pt_sPe(e1, r1, t1, r2, e2): return Pt(Pe(e1, r1, t1), r2, e2)", # l for left (as head entity)
|
129 |
+
"Pt_oPe": "def Pt_oPe(e1, r1, e2, r2, t1): return Pt(e1, r1, Pe(e2, r2, t1))", # r for right (as tail entity)
|
130 |
+
"Pe_Pt": "def Pe_Pt(e1, r1, e2, r2, e3): return Pe(e1, r1, Pt(e2, r2, e3))", # at
|
131 |
+
"Pe_aPt": "def Pe_aPt(e1, r1, e2, r2, e3): return Pe(e1, r1, after(Pt(e2, r2, e3)))", # a for after
|
132 |
+
"Pe_bPt": "def Pe_bPt(e1, r1, e2, r2, e3): return Pe(e1, r1, before(Pt(e2, r2, e3)))", # b for before
|
133 |
+
"Pe_nPt": "def Pe_nPt(e1, r1, e2, r2, e3): return Pe(e1, r1, next(Pt(e2, r2, e3)))", # n for next
|
134 |
+
"Pt_sPe_Pt": "def Pt_sPe_Pt(s1, r1, s2, r2, o1, r3, o2): return Pt(Pe(s1, r1, Pt(s2, r2, o1)), r3, o2)",
|
135 |
+
"Pt_oPe_Pt": "def Pt_oPe_Pt(s1, r1, s2, r2, s3, r3, o1): return Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, o1)))",
|
136 |
+
# 4. entity and & time and
|
137 |
+
"e2i": "def e2i(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2i
|
138 |
+
"e3i": "def e3i(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Pe(e3, r3, t3))", # 3i
|
139 |
+
"t2i": "def t2i(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2i
|
140 |
+
"t3i": "def t3i(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), Pt(e5, r3, e6))", # t-3i
|
141 |
+
# 5. complex time and
|
142 |
+
"e2i_Pe": "def e2i_Pe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Pe(e2, r3, t3))", # pi
|
143 |
+
"Pe_e2i": "def Pe_e2i(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(e2i(e1, r1, t1, e2, r2, t2), r3, t3)", # ip
|
144 |
+
"Pt_le2i": "def Pt_le2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
|
145 |
+
"Pt_re2i": "def Pt_re2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
|
146 |
+
"Pt_se2i": "def Pt_se2i(e1, r1, t1, e2, r2, t2, r3, e3): return Pt(e2i(e1, r1, t1, e2, r2, t2), r3, e3)", # mix ip
|
147 |
+
"Pt_oe2i": "def Pt_oe2i(e1, r1, e2, r2, t1, e3, r3, t2): return Pt(e1, r1, e2i(e2, r2, t1, e3, r3, t2))", # mix ip
|
148 |
+
"t2i_Pe": "def t2i_Pe(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), Pt(e3, r3, e4))", # t-pi
|
149 |
+
"Pe_t2i": "def Pe_t2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, t2i(e2, r2, e3, e4, r3, e5))", # t-ip
|
150 |
+
"Pe_at2i": "def Pe_at2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, after(t2i(e2, r2, e3, e4, r3, e5)))",
|
151 |
+
"Pe_bt2i": "def Pe_bt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, before(t2i(e2, r2, e3, e4, r3, e5)))",
|
152 |
+
"Pe_nt2i": "def Pe_nt2i(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, next(t2i(e2, r2, e3, e4, r3, e5)))",
|
153 |
+
"between": "def between(e1, r1, e2, e3, r2, e4): return TimeAnd(after(Pt(e1, r1, e2)), before(Pt(e3, r2, e4)))", # between(t1, t2) == after t1 and before t2
|
154 |
+
# 5. entity not
|
155 |
+
"e2i_N": "def e2i_N(e1, r1, t1, e2, r2, t2): return And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2)))", # 2in
|
156 |
+
"e3i_N": "def e3i_N(e1, r1, t1, e2, r2, t2, e3, r3, t3): return And3(Pe(e1, r1, t1), Pe(e2, r2, t2), Not(Pe(e3, r3, t3)))", # 3in
|
157 |
+
"Pe_e2i_Pe_NPe": "def Pe_e2i_Pe_NPe(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(And(Pe(e1, r1, t1), Not(Pe(e2, r2, t2))), r3, t3)", # inp
|
158 |
+
"e2i_PeN": "def e2i_PeN(e1, r1, t1, r2, t2, e2, r3, t3): return And(Pe(Pe(e1, r1, t1), r2, t2), Not(Pe(e2, r3, t3)))", # pin
|
159 |
+
"e2i_NPe": "def e2i_NPe(e1, r1, t1, r2, t2, e2, r3, t3): return And(Not(Pe(Pe(e1, r1, t1), r2, t2)), Pe(e2, r3, t3))", # pni = e2i_N(Pe(e1, r1, t1), r2, t2, e2, r3, t3)
|
160 |
+
# 6. time not
|
161 |
+
"t2i_N": "def t2i_N(e1, r1, e2, e3, r2, e4): return TimeAnd(Pt(e1, r1, e2), TimeNot(Pt(e3, r2, e4)))", # t-2in
|
162 |
+
"t3i_N": "def t3i_N(e1, r1, e2, e3, r2, e4, e5, r3, e6): return TimeAnd3(Pt(e1, r1, e2), Pt(e3, r2, e4), TimeNot(Pt(e5, r3, e6)))", # t-3in
|
163 |
+
"Pe_t2i_PtPe_NPt": "def Pe_t2i_PtPe_NPt(e1, r1, e2, r2, t2, r3, e3, e4, r4, e5): return Pe(e1, r1, TimeAnd(Pt(Pe(e2, r2, t2), r3, e3), TimeNot(Pt(e4, r4, e5))))", # t-inp
|
164 |
+
"t2i_PtN": "def t2i_PtN(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(Pt(Pe(e1, r1, t1), r2, e2), TimeNot(Pt(e3, r3, e4)))", # t-pin
|
165 |
+
"t2i_NPt": "def t2i_NPt(e1, r1, t1, r2, e2, e3, r3, e4): return TimeAnd(TimeNot(Pt(Pe(e1, r1, t1), r2, e2)), Pt(e3, r3, e4))", # t-pni
|
166 |
+
# 7. entity union & time union
|
167 |
+
"e2u": "def e2u(e1, r1, t1, e2, r2, t2): return Or(Pe(e1, r1, t1), Pe(e2, r2, t2))", # 2u
|
168 |
+
"Pe_e2u": "def Pe_e2u(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Or(Pe(e1, r1, t1), Pe(e2, r2, t2)), r3, t3)", # up
|
169 |
+
"t2u": "def t2u(e1, r1, e2, e3, r2, e4): return TimeOr(Pt(e1, r1, e2), Pt(e3, r2, e4))", # t-2u
|
170 |
+
"Pe_t2u": "def Pe_t2u(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeOr(Pt(e2, r2, e3), Pt(e4, r3, e5)))", # t-up
|
171 |
+
# 8. union-DM
|
172 |
+
"e2u_DM": "def e2u_DM(e1, r1, t1, e2, r2, t2): return Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2))))", # 2u-DM
|
173 |
+
"Pe_e2u_DM": "def Pe_e2u_DM(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Not(And(Not(Pe(e1, r1, t1)), Not(Pe(e2, r2, t2)))), r3, t3)", # up-DM
|
174 |
+
"t2u_DM": "def t2u_DM(e1, r1, e2, e3, r2, e4): return TimeNot(TimeAnd(TimeNot(Pt(e1, r1, e2)), TimeNot(Pt(e3, r2, e4))))", # t-2u-DM
|
175 |
+
"Pe_t2u_DM": "def Pe_t2u_DM(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, TimeNot(TimeAnd(TimeNot(Pt(e2, r2, e3)), TimeNot(Pt(e4, r3, e5)))))", # t-up-DM
|
176 |
+
# 9. union-DNF
|
177 |
+
"e2u_DNF": "def e2u_DNF(e1, r1, t1, e2, r2, t2): return Pe(e1, r1, t1), Pe(e2, r2, t2)", # 2u_DNF
|
178 |
+
"Pe_e2u_DNF": "def Pe_e2u_DNF(e1, r1, t1, e2, r2, t2, r3, t3): return Pe(Pe(e1, r1, t1), r3, t3), Pe(Pe(e2, r2, t2), r3, t3)", # up_DNF
|
179 |
+
"t2u_DNF": "def t2u_DNF(e1, r1, e2, e3, r2, e4): return Pt(e1, r1, e2), Pt(e3, r2, e4)", # t-2u_DNF
|
180 |
+
"Pe_t2u_DNF": "def Pe_t2u_DNF(e1, r1, e2, r2, e3, e4, r3, e5): return Pe(e1, r1, Pt(e2, r2, e3)), Pe(e1, r1, Pt(e4, r3, e5))", # t-up_DNF
|
181 |
+
}
|
182 |
+
union_query_structures: List[str] = [
|
183 |
+
"e2u", "Pe_e2u", # 2u, up
|
184 |
+
"t2u", "Pe_t2u", # t-2u, t-up
|
185 |
+
]
|
186 |
+
train_query_structures: List[str] = [
|
187 |
+
# entity
|
188 |
+
"Pe", "Pe2", "Pe3", "e2i", "e3i", # 1p, 2p, 3p, 2i, 3i
|
189 |
+
"e2i_NPe", "e2i_PeN", "Pe_e2i_Pe_NPe", "e2i_N", "e3i_N", # npi, pni, inp, 2in, 3in
|
190 |
+
# time
|
191 |
+
"Pt", "Pt_lPe", "Pt_rPe", "Pe_Pt", "Pe_aPt", "Pe_bPt", "Pe_nPt", # t-1p, t-2p
|
192 |
+
"t2i", "t3i", "Pt_le2i", "Pt_re2i", "Pe_t2i", "Pe_at2i", "Pe_bt2i", "Pe_nt2i", "between", # t-2i, t-3i
|
193 |
+
"t2i_NPt", "t2i_PtN", "Pe_t2i_PtPe_NPt", "t2i_N", "t3i_N", # t-npi, t-pni, t-inp, t-2in, t-3in
|
194 |
+
]
|
195 |
+
test_query_structures: List[str] = train_query_structures + [
|
196 |
+
# entity
|
197 |
+
"e2i_Pe", "Pe_e2i", # pi, ip
|
198 |
+
"e2u", "Pe_e2u", # 2u, up
|
199 |
+
# time
|
200 |
+
"t2i_Pe", "Pe_t2i", # t-pi, t-ip
|
201 |
+
"t2u", "Pe_t2u", # t-2u, t-up
|
202 |
+
# union-DM
|
203 |
+
"e2u_DM", "Pe_e2u_DM", # 2u-DM, up-DM
|
204 |
+
"t2u_DM", "Pe_t2u_DM", # t-2u-DM, t-up-DM
|
205 |
+
]
|
206 |
+
|
207 |
+
|
208 |
+
# TODO: Add link to the official dataset URLs here
|
209 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
210 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
211 |
+
_HOST = "https://huggingface.co/datasets"
|
212 |
+
_AUTHOR = "linxy"
|
213 |
+
_DATASET = "ICEWS14"
|
214 |
+
_URLS = {
|
215 |
+
name: f"{_HOST}/{_AUTHOR}/{_DATASET}/resolve/main/zips/{name}.zip?download=true"
|
216 |
+
for name in ["all"] + list(query_name_to_args.keys())
|
217 |
+
}
|
218 |
+
|
219 |
+
|
220 |
+
class QueryData(TypedDict):
|
221 |
+
"""
|
222 |
+
saved in training split: query_name, query, answer
|
223 |
+
saved in valid or test split: query_name, query, answer, easy_answer
|
224 |
+
iterating training dataloader: query_name, query, answer, args, definition
|
225 |
+
iterating valid or test dataloader: query_name, query, answer, easy_answer, args, definition
|
226 |
+
"""
|
227 |
+
query_name: str
|
228 |
+
query: List[int]
|
229 |
+
answer: Set[int]
|
230 |
+
easy_answer: Optional[Set[int]] = None # may be empty, indicating that no easy answer exists in training graph.
|
231 |
+
args: Optional[List[str]] = None
|
232 |
+
definition: Optional[str] = None
|
233 |
+
|
234 |
+
@dataclass
|
235 |
+
class TKGRBuilderConfig(datasets.BuilderConfig):
|
236 |
+
"""BuilderConfig for TKGR (Temporal Knowledge Graph Reasoning)."""
|
237 |
+
query_structure_name: str = "default"
|
238 |
+
|
239 |
+
class ICEWS14Dataset(datasets.GeneratorBasedBuilder):
|
240 |
+
"""TODO: Short description of my dataset."""
|
241 |
+
|
242 |
+
VERSION = datasets.Version("1.0.0")
|
243 |
+
|
244 |
+
# This is an example of a dataset with multiple configurations.
|
245 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
246 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
247 |
+
|
248 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
249 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
250 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
251 |
+
|
252 |
+
# You will be able to load one or the other configurations in the following list with
|
253 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
254 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
255 |
+
STANDARD_BUILDER_CONFIGS = [
|
256 |
+
datasets.BuilderConfig(
|
257 |
+
name=query_name,
|
258 |
+
version=datasets.Version("1.0.0"),
|
259 |
+
description=query_structures[query_name],
|
260 |
+
)
|
261 |
+
for query_name in list(query_name_to_args.keys())
|
262 |
+
]
|
263 |
+
BUILDER_CONFIGS = [
|
264 |
+
datasets.BuilderConfig(
|
265 |
+
name="all",
|
266 |
+
version=VERSION,
|
267 |
+
description=f"All types of queries. Train: {train_query_structures}, Valid | Test: {test_query_structures}",
|
268 |
+
)
|
269 |
+
] + STANDARD_BUILDER_CONFIGS
|
270 |
+
|
271 |
+
DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
272 |
+
|
273 |
+
def _info(self):
|
274 |
+
if self.config.name == "all": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
275 |
+
features = datasets.Features(
|
276 |
+
{
|
277 |
+
"query_name": datasets.Value("string"),
|
278 |
+
"definition": datasets.Value("string"),
|
279 |
+
"query": datasets.Sequence(feature=datasets.Value("int32")),
|
280 |
+
"answer": datasets.Sequence(feature=datasets.Value("int32")),
|
281 |
+
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
|
282 |
+
"args": datasets.Sequence(feature=datasets.Value("string")),
|
283 |
+
}
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
features = datasets.Features(
|
287 |
+
{
|
288 |
+
"query_name": datasets.Value("string"),
|
289 |
+
"definition": datasets.Value("string"),
|
290 |
+
"query": datasets.Sequence(feature=datasets.Value("int32")),
|
291 |
+
"answer": datasets.Sequence(feature=datasets.Value("int32")),
|
292 |
+
"easy_answer": datasets.Sequence(feature=datasets.Value("int32")),
|
293 |
+
"args": datasets.Sequence(feature=datasets.Value("string")),
|
294 |
+
}
|
295 |
+
)
|
296 |
+
return datasets.DatasetInfo(
|
297 |
+
description=_DESCRIPTION,
|
298 |
+
features=features,
|
299 |
+
homepage=_HOMEPAGE,
|
300 |
+
license=_LICENSE,
|
301 |
+
citation=_CITATION,
|
302 |
+
)
|
303 |
+
|
304 |
+
def _split_generators(self, dl_manager):
|
305 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
306 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
307 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
308 |
+
urls = _URLS[self.config.name]
|
309 |
+
data_dir = dl_manager.download_and_extract(urls)
|
310 |
+
return [
|
311 |
+
datasets.SplitGenerator(
|
312 |
+
name=datasets.Split.TRAIN,
|
313 |
+
# These kwargs will be passed to _generate_examples
|
314 |
+
gen_kwargs={
|
315 |
+
"filepath": os.path.join(data_dir, "train.jsonl"),
|
316 |
+
"split": "train",
|
317 |
+
},
|
318 |
+
),
|
319 |
+
datasets.SplitGenerator(
|
320 |
+
name=datasets.Split.VALIDATION,
|
321 |
+
# These kwargs will be passed to _generate_examples
|
322 |
+
gen_kwargs={
|
323 |
+
"filepath": os.path.join(data_dir, "valid.jsonl"),
|
324 |
+
"split": "valid",
|
325 |
+
},
|
326 |
+
),
|
327 |
+
datasets.SplitGenerator(
|
328 |
+
name=datasets.Split.TEST,
|
329 |
+
# These kwargs will be passed to _generate_examples
|
330 |
+
gen_kwargs={
|
331 |
+
"filepath": os.path.join(data_dir, "test.jsonl"),
|
332 |
+
"split": "test"
|
333 |
+
},
|
334 |
+
),
|
335 |
+
]
|
336 |
+
|
337 |
+
def _generate_examples(self, filepath, split):
|
338 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
339 |
+
# This method yields (key, example) tuples from the dataset.
|
340 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
341 |
+
if not os.path.exists(filepath):
|
342 |
+
return
|
343 |
+
with open(filepath, encoding="utf-8") as f:
|
344 |
+
for key, row in enumerate(f):
|
345 |
+
data = json.loads(row)
|
346 |
+
query_name = data["query_name"]
|
347 |
+
if self.config.name == "all":
|
348 |
+
yield key, {
|
349 |
+
"query_name": query_name,
|
350 |
+
"query": data["query"],
|
351 |
+
"answer": data["answer"],
|
352 |
+
"easy_answer": data["easy_answer"] if "easy_answer" in data else None,
|
353 |
+
"args": query_name_to_args[query_name],
|
354 |
+
"definition": query_structures[query_name],
|
355 |
+
}
|
356 |
+
else:
|
357 |
+
yield key, {
|
358 |
+
"query_name": query_name,
|
359 |
+
"query": data["query"],
|
360 |
+
"answer": data["answer"],
|
361 |
+
"easy_answer": data["easy_answer"] if "easy_answer" in data else None,
|
362 |
+
"args": query_name_to_args[query_name],
|
363 |
+
"definition": query_structures[query_name],
|
364 |
}
|