litagin commited on
Commit
53cde40
1 Parent(s): bd7f6fd

Add README and example

Browse files
Files changed (2) hide show
  1. README.md +142 -0
  2. example.ipynb +0 -0
README.md CHANGED
@@ -1,3 +1,145 @@
1
  ---
 
 
2
  license: gpl-3.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ja
4
  license: gpl-3.0
5
+ license_link: LICENSE.md
6
+ multilinguality:
7
+ - monolingual
8
+ pretty_name: Galgame_Speech_ASR_16kHz
9
+ size_categories:
10
+ - 1M<n<10M
11
+ task_categories:
12
+ - automatic-speech-recognition
13
+ tags:
14
+ - speech
15
+ - audio
16
+ - text
17
+ - japanese
18
+ - anime
19
+ - voice
20
+ - visual novel
21
+ - galgame
22
+ - not-for-all-audiences
23
  ---
24
+
25
+ # Dataset Card for Galgame_Speech_ASR_16kHz
26
+
27
+ > [!IMPORTANT]\
28
+ > The following rules (in [the original repository](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset)) must be followed:
29
+ >
30
+ > 必须遵守GNU General Public License v3.0内的所有协议!
31
+ > 附加:禁止商用,本数据集以及使用本数据集训练出来的**任何模型**都不得用于**任何商业行为**,如要用于商业用途,请找数据列表内的**所有厂商授权**(笑),因违反开源协议而出现的任何问题都与本人无关!
32
+ > 训练出来的模型**必须开源**,是否在README内引用本数据集由训练者自主决定,不做强制要求。
33
+ >
34
+ > **English**:
35
+ > You must comply with all the terms of the GNU General Public License v3.0!
36
+ > Additional note: Commercial use is prohibited. This dataset and any model trained using this dataset cannot be used for any commercial purposes. If you wish to use it for commercial purposes, please obtain authorization from **all the providers listed in the dataset** (LOL). I bear no responsibility for any issues arising from violations of the open-source license!
37
+ > Models trained using this dataset **must be open-sourced**. Whether to cite this dataset in the README is left to the discretion of the user and is not mandatory.
38
+ >
39
+ > **日本語**:
40
+ > GNU General Public License v3.0 内のすべての規約を遵守する必要があります!
41
+ > 追加事項:商用利用は禁止されています。本データセットおよび本データセットを使用して訓練された**いかなるモデル**も**商業行為には一切使用できません**。商用利用を希望する場合は、データセットリスト内の**すべての提供者の許可を取得してください**(笑)。オープンソースライセンス違反によって発生したいかなる問題も私は責任を負いません!
42
+ > このデータセットを使用して訓練されたモデルは**オープンソースにする必要があります**。README 内で本データセットを引用するかどうかは、ユーザーの自主的な判断に委ねられており、強制されません。
43
+
44
+ <!-- Provide a quick summary of the dataset. -->
45
+
46
+ - A Japanese speech dataset from Japanese visual novels (Galgames) intended for training ASR (Automatic Speech Recognition) models like Whisper.
47
+ - This dataset is a derivative work of [OOPPEENN/Galgame_Dataset](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset) (thanks to the original authors!), and modified the original dataset for ASR purpose (see [Modifications](#modifications))
48
+
49
+ ## Dataset Details
50
+
51
+ - **Size**:
52
+ - **3,746,321** audio files (all with transcriptions)
53
+ - **5,355** hours in total
54
+ - 115 tar files with 100.16 GB in total
55
+ - **Language**: Japanese
56
+ - **Format**:
57
+ - [**WebDataset**](https://github.com/webdataset/webdataset) format (see [Dataset Structure](#dataset-structure))
58
+ - **16kHz**, 16-bit, mono **OGG** files
59
+
60
+ ### Dataset Description
61
+
62
+ - **Size**: 3,746,321 audio-text pairs, 5,355 hours, 100GB
63
+ - **Language**: Japanese
64
+ - **Format**: 16kHz, 16-bit, mono OGG
65
+
66
+ ### Dataset Sources
67
+
68
+ All the audio files and transcriptions are from [OOPPEENN/Galgame_Dataset](https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset). Many thanks to the original authors!
69
+
70
+ ### Modifications
71
+
72
+ I modified the original dataset in the following ways:
73
+
74
+ - Resampled the audio files to 16kHz OGG format
75
+ - Renamed all the files using a random SHA-256-like hash
76
+ - Excluded audio files which have several different transcriptions
77
+ - Normalized transcriptions and filtered audio files according to the results in the following ways (see [normalize_text_and_filter.py](normalize_text_and_filter.py) for the actual code):
78
+ - Deleted `\t`, `―` (dash), and spaces (half-width or full-width), and normalized some letters and symbols (e.g., "え~?" → "えー?")
79
+ - Converted full-width alphabets and numbers to half-width
80
+ - Converted half-width katakana to full-width
81
+ - Converted "……" (or more) and "ーー" to "…" and "ー" respectively (trying to avoid unnecessary repetitions)
82
+ - Converted repetitions like "???" → "?" and "!?!?!?" → "!?" (repetitions of `!?♪♡`)
83
+ - Converted repetitions of letters in `ッっあいうえおんぁぃぅぇぉゃゅょアイウエオンァィゥェォャュョ` with 3 or more repetitions to 2 repetitions (e.g., "あああっっっ" → "ああっっ")
84
+ - Only allowed the following characters:
85
+ - Japanese Hiragana, Katakana, Kanji
86
+ - Alphabets (a-z, A-Z) and numbers (0-9)
87
+ - Symbols: `。、!?…♪♡○`
88
+
89
+ ## Uses
90
+
91
+ ### Direct Use
92
+
93
+ - Fine-tuning ASR models like Whisper for the Japanese anime-like speech domain
94
+ - Training ASR models for the NSFW domain (aegi and chupa voices), which Whisper and other ASR models mostly cannot recognize
95
+
96
+ ### Out-of-Scope Use
97
+
98
+ - Not suitable for TTS (Text-to-Speech) and VC (Voice Conversion) since the audio quality is low (16kHz)
99
+
100
+ ## Dataset Structure
101
+
102
+ - This dataset is in [**WebDataset**](https://github.com/webdataset/webdataset) format.
103
+ - It consists of `galgame-speech-asr-16kHz-train-{000000..000114}.tar` files.
104
+ - Each tar file contains of audio (OGG) and text (TXT) files with the same name (SHA-256-like hash).
105
+ ```
106
+ 00000aa36e86ba49cb67fb886cce2c044c03dbb8ffddad4cb4e5f2da809e91ab.ogg
107
+ 00000aa36e86ba49cb67fb886cce2c044c03dbb8ffddad4cb4e5f2da809e91ab.txt
108
+ 00000fe59140c18655921cd316f03ae7a81a0708a2d81a15d9b7ae866c459840.ogg
109
+ 00000fe59140c18655921cd316f03ae7a81a0708a2d81a15d9b7ae866c459840.txt
110
+ 0000100db43be195b0dc774ab0397c3af594bd4c87683eeffa3df07c29f3eebc.ogg
111
+ ...
112
+ ```
113
+
114
+ - Except for the last tar file, each tar file contains 32768 audio-text pairs (OGG and TXT files), hence 65536 files in total.
115
+
116
+ - File names are randomly generated SHA-256 hashes, so the order of the files has no mean (e.g., the files coming from the same Galgame are not necessarily adjacent).
117
+
118
+ ## How to Use
119
+
120
+ To load this dataset in the [🤗 Datasets](https://huggingface.co/docs/datasets/en/index) library, just use:
121
+
122
+ ```python
123
+ from datasets import load_dataset
124
+
125
+ dataset = load_dataset("litagin/Galgame_Speech_ASR_16kHz", streaming=True)
126
+ ```
127
+ Be sure to set `streaming=True` if you want to avoid downloading the whole dataset at once.
128
+
129
+ See [example.ipynb](example.ipynb) for a simple example of how to use the dataset in this way.
130
+
131
+ See [Webdataset](https://github.com/webdataset/webdataset) for more details on how to use the dataset in WebDataset format in, e.g., PyTorch.
132
+
133
+ ## Dataset Creation
134
+
135
+ ### Curation Rationale
136
+
137
+ - Wanted a large-scale Japanese audio-text pair ASR corpus in the anime-like speech domain by professional voice actors, with 100% accurate transcriptions!
138
+ - Personally, I have been frustrated with the inability of Whisper to recognize aegi and chupa voices in Galgames, so I wanted to train an ASR model that can recognize them!
139
+
140
+ ## Bias, Risks, and Limitations
141
+
142
+ - The dataset is derived from (anime-like) Galgames, so the speech is quite different from usual utterances in daily life.
143
+ - The dataset contains NSFW audio (aegi and chupa) and lines, so it is not suitable for all audiences.
144
+ - The dataset is not suitable for TTS and VC since the audio quality is low (16kHz).
145
+ - There are more female voices than male voices in the dataset, which may introduce a gender bias in models trained on it.
example.ipynb ADDED
The diff for this file is too large to render. See raw diff