Datasets:
lmqg
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
qg_squad / qg_squad.py
asahi417's picture
update
57bdaee
raw
history blame
3.52 kB
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_VERSION = "5.0.1"
_NAME = "qg_squad"
_CITATION = """
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
"""
_DESCRIPTION = """
[SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) evaluation set for the question generation (QG) models. The split
of test and development set follows the ["Neural Question Generation"](https://arxiv.org/abs/1705.00106) work and is
compatible with the [leader board](https://paperswithcode.com/sota/question-generation-on-squad11).
"""
_URL = 'https://huggingface.co/datasets/lmqg/qg_squad/resolve/main/data/processed'
_URLS = {
'train': ['{}/train{:02d}.jsonl'.format(_URL, i) for i in range(23)],
'test': ['{}/test{:02d}.jsonl'.format(_URL, i) for i in range(4)],
'validation': ['{}/dev{:02d}.jsonl'.format(_URL, i) for i in range(4)]
}
class QGSquadConfig(datasets.BuilderConfig):
"""BuilderConfig for SquadQG"""
def __init__(self, **kwargs):
"""BuilderConfig for SquadQG.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(QGSquadConfig, self).__init__(**kwargs)
class QGSquad(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
QGSquadConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"answer": datasets.Value("string"), "paragraph_question": datasets.Value("string"),
"question": datasets.Value("string"),
"sentence": datasets.Value("string"),
"paragraph": datasets.Value("string"),
"sentence_answer": datasets.Value("string"),
"paragraph_answer": datasets.Value("string"),
"paragraph_sentence": datasets.Value("string")
}
),
supervised_keys=None,
homepage="https://github.com/asahi417/lm-question-generation"
)
def _split_generators(self, dl_manager):
downloaded_file = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_file["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": downloaded_file["validation"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": downloaded_file["test"]}),
]
def _generate_examples(self, filepaths):
_key = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
_list = f.read().split('\n')
if _list[-1] == '':
_list = _list[:-1]
for i in _list:
data = json.loads(i)
yield _key, data
_key += 1