""" Script to process raw SQuAD file for Question Generation format You need to run `python -m spacy download en_core_web_sm`. Split when uploading to dataset hub by ``` gsplit -l 3300 -d --additional-suffix=.jsonl train.jsonl train gsplit -l 3300 -d --additional-suffix=.jsonl test.jsonl test gsplit -l 3300 -d --additional-suffix=.jsonl dev.jsonl dev ``` """ import json import os import re from glob import glob from tqdm import tqdm from typing import List, Dict import spacy SPLITTER = spacy.load('en_core_web_sm') HIGHLIGHT_TOKEN = '' def get_sentence(document: str): return [str(s) for s in SPLITTER(document).sents] def jsonline_reader(filename: str): with open(filename, 'r') as f_reader: examples = [json.loads(i) for i in f_reader.read().split('\n') if len(i) > 0] return examples def process_single_data(data: Dict): """ Convert single raw json data into QG format """ example = {'question': data["question"], 'passage': data["context"], 'answer': data["answer"]} # get sentence position = example['passage'].find(example['answer']) assert position != -1 before_tmp = get_sentence(example['passage'][:position]) if len(before_tmp) == 0: before = '' before_sentence = '' else: if before_tmp[-1].endswith('.'): before = ' '.join(before_tmp) before_sentence = '' else: before = ' '.join(before_tmp[:-1]) before_sentence = before_tmp[-1] before_sentence = before_sentence if before_sentence.endswith(' ') else '{} '.format(before_sentence) after_tmp = get_sentence(example['passage'][position + len(example['answer']):]) if len(after_tmp) == 0: after = '' after_sentence = '' else: after = ' '.join(after_tmp[1:]) after_sentence = after_tmp[0] after_sentence = after_sentence if after_sentence.startswith(' ') else ' {}'.format(after_sentence) example['sentence'] = '{}{}{}'.format(before_sentence, example['answer'], after_sentence) # get passage_sentence before = '' if before == '' else '{} '.format(before) after = '' if after == '' else ' {}'.format(after) source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) example['passage_sentence'] = re.sub(r'\s+', ' ', source_text) # get passage_answer source_text = '{0}{1} {2} {1}{3}'.format( example['passage'][:position], HIGHLIGHT_TOKEN, example['answer'], example['passage'][position + len(example['answer']):]) example['passage_answer'] = re.sub(r'\s+', ' ', source_text) # get sentence_answer before = get_sentence(example['passage'][:position]) if len(before) == 0 or before[-1].endswith('.'): before = '' else: before = before[-1] if before[-1].endswith(' ') else '{} '.format(before[-1]) after = get_sentence(example['passage'][position + len(example['answer']):]) if len(after) == 0: after = '' else: after = after[0] if after[0].startswith(' ') else ' {}'.format(after[0]) source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) return example if __name__ == '__main__': output = './data/processed' os.makedirs(output, exist_ok=True) path = {'train': 'data/raw/train*.jsonl', 'dev': 'data/raw/dev.jsonl', 'test': 'data/raw/test.jsonl'} for k, v in path.items(): json_data = [] for _file in sorted(glob(v)): json_data += jsonline_reader(_file) with open('{}/{}.jsonl'.format(output, k), 'w') as f: for single_data in tqdm(json_data): single_data = process_single_data(single_data) f.write(json.dumps(single_data) + '\n')