import datasets from datasets import load_dataset from datasets.tasks import Summarization _DESCRIPTION = """ [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) evaluation set for the question generation (QG) models. The split of test and development set follows the ["Neural Question Generation"](https://arxiv.org/abs/1705.00106) work and is compatible with the [leader board](https://paperswithcode.com/sota/question-generation-on-squad11). """ _URL = 'https://huggingface.co/datasets/asahi417/squad_qg/data/processed' _URLS = { 'train': ['{}/train{:02d}.jsonl'.format(_URL, i) for i in range(23)], 'test': ['{}/test{:02d}.jsonl'.format(_URL, i) for i in range(4)], 'validation': ['{}/dev{:02d}.jsonl'.format(_URL, i) for i in range(4)] } class SquadQGConfig(datasets.BuilderConfig): """BuilderConfig for SquadQG""" def __init__(self, **kwargs): """BuilderConfig for SquadQG. Args: **kwargs: keyword arguments forwarded to super. """ super(SquadQGConfig, self).__init__(**kwargs) class SquadQG(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "answer": datasets.Value("string"), "question": datasets.Value("string"), "sentence": datasets.Value("string"), "passage": datasets.Value("string"), "sentence_answer": datasets.Value("string"), "passage_answer": datasets.Value("string"), "passage_sentence": datasets.Value("string") } ), supervised_keys=None, task_templates=[ Summarization(task='question generation', text_column="passage_answer", summary_column='question') ], homepage="https://github.com/asahi417/lm-question-generation" ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["validation"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["test"]}), ] def _generate_examples(self, filepath): logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: for _id, i in enumerate(f.read().split('\n')): data = json.loads(i) yield _id, data